
RESEARCH Open Access

The optimal crowd learning machine
Bilguunzaya Battogtokh1* , Majid Mojirsheibani2 and James Malley1

* Correspondence:
battogtokhb@nih.gov
1Center for Information Technology,
National Institutes of Health,
Bethesda, MD, USA
Full list of author information is
available at the end of the article

Abstract

Background: Any family of learning machines can be combined into a single learning
machine using various methods with myriad degrees of usefulness.

Results: For making predictions on an outcome, it is provably at least as good as the
best machine in the family, given sufficient data. And if one machine in the family
minimizes the probability of misclassification, in the limit of large data, then Optimal
Crowd does also. That is, the Optimal Crowd is asymptotically Bayes optimal if any
machine in the crowd is such.

Conclusions: The only assumption needed for proving optimality is that the outcome
variable is bounded. The scheme is illustrated using real-world data from the UCI
machine learning site, and possible extensions are proposed.

Background
The universe of statistical learning machines is still rapidly expanding, and new methods

are being introduced almost daily. Despite these advances, choosing one machine over

many other plausible machines, or, one particular version from within a family, can be

arduous and resource intensive. Equally important, understanding how the schemes work

and the results they produce, remains a separate and ongoing challenge. Unfortunately,

for most researchers, many learning machines are “black boxes.” For a general, self-con-

tained, and relatively nontechnical introduction to learning machines, see [1].

The scheme described here encourages the implementation of multiple and diverse

machines. It begins with a family of machines, each making separate predictions or

classifications, given the training data. These individual predictions are then used as

inputs to a single machine. This final machine is itself functionally transparent, does

not require any user-supplied tuning parameters or parameter estimation. It is virtually

assumption free, as it only requires that the outcome variable is bounded.

Earlier version of this approach has been studied in the literature under the topic of

stacking. More recently deep learning has been introduced, versions of which use

individual machine predictions as layers, themselves used as inputs to another

machine; for details of both, see [2].

The scheme discussed here is distinct from these approaches. Most notably, the

optimal crowd uses predictions for a test point, generated by the separate machines, to

direct the researcher to a specific subset of the training data. Then the known outcomes

in the training data that are closest to the test point are simply averaged. As discussed

below, when the scheme is used for pure classification, over zero/one outcomes, the

measure of closeness is immediate, requiring no tuning or new parameters.
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More precisely, the predictions of the separate machines are not averaged to generate a

final summary value, so the scheme is not an ensemble or a committee method. Indeed,

after the several machine predictions are used to sort the training data into small compart-

ments in data space, the predictions are all effectively set aside. To repeat, the crucial prop-

erty of this scheme is that, after the data partitioning, it averages over known outcomes in

the training data rather than over the machine predictions for a test point.

It is not asserted that the learning machine discussed here will strictly outperform any sin-

gle machine in the crowd, even in the limit of large data. However, given sufficient data, the

method has been shown analytically to be at least as good as the best machine in the family;

see [3]. For this reason the method is called here the optimal crowd machine. The technical

basis of the particular method studied here, the optimal crowd machine, was presented in

[4]; see also [5, 6, 7, 8, 3].

For any prediction or estimation problem, choosing a model, estimating parameters from

data, or selecting kernel functions, for example, all introduce a small, or perhaps sizeable,

cost to analysis and comprehension. Even before the predictions are assembled, a researcher

must wade through these model selection decisions, all of which can be resource intensive

and divert from understanding of the data itself, and the predicted outcomes… The optimal

crowd machine makes none of these demands. In deploying a optimal crowd the researcher

is free to reason over a diverse family of machines, using individual statistical preferences or

subject-matter knowledge, and without having to make often difficult choices on model

selection.

Equally important, in using the optimal crowd there is no declaration of a best model.

There is no necessity for doing so, even assuming that they might be a single winning model

in the family of machines. In the situation where one or more of the researcher-defined ma-

chines is, in fact, the best machine, the optimal crowd is provably as least as good as that

model, given sufficient data.

This optimality, free of parametric assumptions, promotes the assembly of any collec-

tion of machines into a crowd, and, indeed, multiple families of machines are encouraged.

For example, a suite of support vector machines can be proposed, using a wide range of

researcher-chosen kernels. A collection of k-nearest neighbor’s schemes over a wide range

of k values is also easily accommodated. And a collection of random forests with a wide

range of terminal node sizes is another possible family of machines for the crowd.

The optimal crowd is studied here over a family of k-NNs, of random forests, and of

SVMs. Machine versions within each family are all applied to the same data, and the

optimal crowd uses the complete set of predictions for each test point as input data.

Indeed, using the multiple machine predictions as new or, synthetic features in the

crowd allows the machines to learn from each other; see [9]. The particular machine

families in this project are representative of machines often used in the data analysis

community.

Most importantly, and distinct from these familiar machines, the crowd machine, by

itself, requires no training data, and has no need for tuning parameters.

Learning machines in a crowd

To demonstrate the scheme, several well-known families of learning machines were

used, along with several versions within each family.
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A Random Forest (RF) is a learning machine that consists of many classification, or

regression, decision trees. A random bootstrap sample (sampling with replacement) of

the data is used to grow a decision tree using selected features at each node of each

tree. A node is split using a feature from the complete list of features that is locally

best. Many splitting schemes are available, as are schemes for declaring the best split.

The splitting is repeated until the tree reaches a terminal node sample size which is de-

fined by the researcher. This process is repeated until a user-specified number of trees

have been generated. Each test point is sent down all the trees, and the forest uses the

majority vote across the collection of trees for the final prediction. In this study, just

100 trees were used, and the fraction of the input samples required to fill a terminal

leaf node was varied;

A k-nearest neighbor (kNN) scheme uses training samples in a feature space and clas-

sification, or regression, is based on the distance of a specific test point to the training

samples. For the k nearest points, the known outcomes in the training data are then av-

eraged. In this study, several values for k were used;

A support vector machine (SVM) utilizes hyper planes in a transformed version of the

sample data space to separate training data. This separation requires a specific, user-

input kernel function, or weighting function, such that a so-called margin of a support

vector scheme is maximized. In this study, several kernel functions were used;

Synthetic learning machines were also used in this project; see [9]. Here, each predic-

tion of each machine is generates a new, synthetic feature, and each feature is then

added to the original, training data. In the data analysis below, the synthetic features

were also input to a single random forest learning machine, and the output from this

machine was also added to the original data. In this way, learning machines can learn

from each other; see the Discussion below.

The optimal crowd classifier

The optimal crowd classifier provides a solution to the problem of pure classification,

where the independent outcome is just zero/ one, or, case/control outcomes such as

{tumor, not tumor}. The individual machines in the crowd are each taught from the

original training data and return zero/one predictions for each point.

As mentioned above, the data can also be supplemented to include synthetic features.

For this, the prediction of each machine at each point in the training data is added as a

new feature to the original data. In this study, results from the optimal crowd were

studied with and without the inclusion of synthetic features.

Individual machine predictions are merely used to guide the researcher to known

outcomes that are given in the training data, and these are then averaged for a final

prediction of a test point. Notably, this method does not average over multiple machine

predictions but rather averages over known outcomes in the given data.

An example can help make this more transparent, and refer to Fig. 1. In this 2 × 2

table, the zero and one labels for the rows and columns refer to the predictions made

by Machine A and Machine B on all the training data. The zeroes and ones are known

outcomes and the optimal crowd directs the analysis to certain of these outcomes.

For example, suppose that for a single test point, Machine A predicts 0, and Machine

B predicts 1. These predictions direct the researcher to the upper right corner in this
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table. The optimal crowd machine averages over the known values of training data in

this cell. By inspection, the optimal crowd machine estimates the probability for that

test subject as 3/4 for being Outcome 0, and 1/4 for being Outcome 1. For the final

classification, using a 50% cut-point, the test point is declared as Outcome 0.

If there were no outcomes in this cell, the prediction for the test point would move on

to the other available machine predictions. Thus, a {0, 1} test point prediction for the two

machines is one unit away from both the {0, 0} and {1,1} cells, and two units away from

the {1,0} cell. Therefore the optimal crowd would average over the known values in the

{0,0} and the {1,1} cells, assuming machine predictions from the training data led to either

of these cells.

Hence, in the optimal crowd scheme, there is never a possible empty cell problem.

More precisely, the machines might not make all possible pairs of feasible predictions over

the training data, but they don’t need to–only the filled cells made by the pair of machines

on the training data are used in the final result.

An optimal crowd can incorporate either pure classification or probability machines, or

both. The output from a probability machine is converted to a simple classification using

a 50% cut-point. Both types of machines are used in this project; see [10] for more on

probability machines.

Datasets

Two datasets were studied in this project.

First, the Wisconsin Breast Cancer Data Set (Original) was obtained from the

Machine Learning Repository of the University of California, Irvine [http://archive.ic-

s.uci.edu/ml/]. The data set consisted of 10 features that have real integer values from

1–10 with 699 instances. These features describe characteristics of cells that may or

may not be cancerous. The original dataset contains 16 instances of a missing feature

values. Samples with missing values were deleted from the data set, reducing the sam-

ple size to 683: 444 instances were benign, classified as 0, and 239 instances were ma-

lignant, classified as one. One hundred fifty samples from each class were randomly

Fig. 1 In this 2 × 2 table, the labels for the rows and columns refer to the predictions made by Machine A
and Machine B on all the training data. The zeroes and ones in the four cells are known outcomes in the
data, and the optimal crowd directs the analysis to these outcomes
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chosen to comprise the training data while fifty samples from each class were taken to

comprise the testing data.

And second, the SpamBase Data set, was also obtained from the Machine Learning

Repository of the University of California, Irvine [http://archive.ics.uci.edu/ml/]. The data

set consisted of 57 features that are either continuous real or continuous integer values

with 4601 instances; 2788 instances were not spam, classified as 0, and 1813 instances

were spam, classified as one. A total of 1,350 samples from each class were randomly

chosen to form the training data, while a separate 450 samples were randomly chosen to

form the testing data. The features (predictors, independent variables) described charac-

teristics of text taken from actual emails that may or may not be spam.

Finally, features in both datasets were scaled to be in the range [0,1]. For the purpose

of using the optimal crowd on a variety of machine learning families were deployed.

Results
Percent error was used to evaluate machine performance, that is, the total number of

samples misclassified by a machine divided by the total number of samples in the data

and a five-fold cross-validation (5XCV) was undertaken.

The performance of the optimal crowd and the individual machines were applied to

pure classification and classification based on probability, where the output from a prob-

ability machine is converted to a simple classification using a 50% cut-point. Figures 2, 3,

6, 8, 10, and 12 give the 5XCV results of applying both versions, with and without syn-

thetic features, of the optimal crowd and individual machines on the Breast Cancer and

SpamBase datasets for varying numbers of individual machines included in the optimal

crowds. The numbers of learning machines tested were eighteen, ten, and three. Note that

{SVM kernel = poly} is not shown on some graphs since the percent error exceeded 0.50

in some instances. Additionally, for each performance result, a histogram depicted the

Fig. 2 Depicts 5XCV outcomes on 18 learning machines used in the optimal crowd for Breast Cancer Data.
200 case and 200 control samples were used for the 5XCV. The percent errors of each fold were averaged
for a final result. The error bars represent one standard error. The label “SYN = True” means that synthetic
features were used in the optimal crowd, and the label “SYN = False” refers to the lack of synthetic features.
Panel a depicts machine performances for classification based on probability, and Panel b depicts machine
performances for pure classification
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number of training instances (known outcomes) for each cell in the optimal crowd is in-

cluded to examine if large disparities in distribution across the cells and a large number of

cells would negatively impact performance in the optimal crowd; these histograms are

Figs. 4, 5, 7, 9, 11, and 13.

For both pure classification, and for classification using a probability machine, and on

both data sets, the optimal crowd classifiers do quite well. The optimal crowd requires no

training sample as do many other machines. Hence, for example, given only the 400 sub-

jects in Breast Cancer Data (200 per group), the 5XCV process applied to the optimal

crowd, is at each step, given just 20% of the data, that is about 40 subjects from each

Fig. 3 Depicts 5XCV outcomes on 18 learning machines used in the optimal crowd classifier for SpamBase
Data. 1800 spam and 1800 not-spam samples were used for the 5XCV. The percent errors of each fold were
averaged for a final result. The error bars represent one standard error. The label “SYN = True” means that
synthetic features were used in the optimal crowd, and the label “SYN = False” refers to the lack of synthetic
features. Panel a depicts machine performances for classification based on probability, and Panel b depicts
machine performances for pure classification

Fig. 4 Depicts a histogram for cell counts of known outcomes on Breast Cancer data using the optimal
crowd with 18 machines and no synthetic features
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group (80 in total). To repeat, the optimal crowd is making its predictions using the re-

sults of the many machines as they are applied to just a fraction of the complete data.

It is noted that the optimal crowd performs well regardless of the number of ma-

chines in the crowd. The crowd is analytically indifferent to the number of machines.

From the cell count graphs, it is clear that some cells are sparsely populated when

greater numbers of machines are utilized. However, this does not necessarily indicate

that the cell provides a weak estimate, and our results as above demonstrate this; see

Figs. 4, 5, 7, 9, 11, and 13. Indeed, the analytical results of [3] do not depend on the

number of machine for optimality, though, like any statistical procedure, closeness to

the Bayes minimum error is a function of sample size.

Fig. 5 Depicts a histogram for cell counts of known outcomes on SpamBase data using the optimal crowd
with 18 machines and no synthetic features

Fig. 6 Depicts 5XCV outcomes on ten learning machines used in the optimal crowd for Breast Cancer Data.
200 case and 200 control samples were used for the 5XCV. The percent errors of each fold were averaged
for a final result. The error bars represent one standard error. The label “SYN = True” means that synthetic
features were used in the optimal crowd, and the label “SYN = False” refers to the lack of synthetic features.
Panel a depicts machine performances for classification based on probability, and Panel b depicts machine
performances for pure classification
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Discussion
Not shown above, in Figs. 2 and 3, is that some probabilities generated by probability

machines for certain test instances are not in the unit interval. Specifically, these were

out of bounds probabilities generated by SVM predictions for these two test cases.

Probabilistic, or regression estimates that were not in the interval [0, 1] are a known

problem of SVMs. For our study, we used a simple rule: estimated SVM “probabilities”

larger than 1 were mapped to 1, and those less than 0 were mapped to 0.

The optimal crowd has been rigorously shown to be at least as good as the best ma-

chine in the family, as the sample size increases; see [3]. Indeed, [3] demonstrated opti-

mality for the crowd operating as a regression machine. And the single assumption

Fig. 7 Depicts a histogram for cell counts of known outcomes on Breast Cancer data using the optimal
crowd with 10 machines and no synthetic features

Fig. 8 Depicts 5XCV outcomes on 10 learning machines used in the optimal crowd classifier for SpamBase
Data. 1800 spam and 1800 not-spam samples were used for the 5XCV. The percent errors of each fold were
averaged for a final result. The error bars represent one standard error. The label “SYN = True” means that
synthetic features were used in the optimal crowd, and the label “SYN = False” refers to the lack of synthetic
features. Panel a depicts machine performances for classification based on probability, and Panel b depicts
machine performances for pure classification
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guaranteeing this optimality in either case is that the known outcomes are bounded;

see the discussion following Proposition 2.2 in [3]. No other conditions are placed on

the data, and indeed nothing is assumed for the original measured variables, from

which the separate machines derive their predictions.

As with any statement of statistical optimality relating to sample size, the amount of

data required to well-approximate the Bayes error rate lower bound, will vary from

problem to problem. The posted error rates of the optimal crowd for the 5XCV analysis

on each data set support the premise that the crowd performs well on small and

medium sample sizes.

Furthermore, it has been formally demonstrated that the rate of convergence is not a

function of the dimensionality of the data; see the discussion in [3] following Theorem

Fig. 9 Depicts a histogram for cell counts of known outcomes on SpamBase data using the optimal crowd
with ten machines and no synthetic features

Fig. 10 Depicts 5XCV outcomes on three learning machines used in the optimal crowd for Breast Cancer
Data. 200 case and 200 control samples were used for the 5XCV. The percent errors of each fold were
averaged for a final result. The error bars represent one standard error. The label “SYN = True” means that
synthetic features were used in the optimal crowd, and the label “SYN = False” refers to the lack of synthetic
features. Panel a depicts machine performances for classification based on probability, and Panel b depicts
machine performances for pure classification

Battogtokh et al. BioData Mining  (2017) 10:16 Page 9 of 12



2.1. Hence, the curse of dimensionality, at least relative to convergence rates, is not a

problem of the optimal crowd machine.

The optimal crowd can be applied to estimation of risk effects, or log odds, or risk

differences, for each test subject. Typically, some version of a logistic regression model

is proposed for the data, but this also requires parameter estimation and tuning, as with

any classical statistics model-fitting schemes. A regression version of the optimal crowd

can easily accommodate a collection of methods or models or machines that separately

estimate risk effects. The use of multiple learning machines acting as probability esti-

mation scheme, for estimation of risk effects for each subject, was examined in [11].

The application of the optimal crowd to such estimation will be considered elsewhere.

Along the same lines, multiple Bayes models with different priors can be sent to the

optimal crowd. If one of the models and its associated priors is correct, then given

Fig. 11 Depicts a histogram for cell counts of known outcomes on Breast Cancer data using the optimal
crowd with 3 machines and no synthetic features

Fig. 12 Depicts 5XCV outcomes on 3 learning machines used in the optimal crowd classifier for SpamBase
Data. 1800 spam and 1800 not-spam samples were used for the 5XCV. The percent errors of each fold were
averaged for a final result. The error bars represent one standard error. The label “SYN = True” means that
synthetic features were used in the optimal crowd, and the label “SYN = False” refers to the lack of synthetic
features. Panel a depicts machine performances for classification based on probability, and Panel b depicts
machine performances for pure classification
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sufficient data, the optimal crowd will converge to the predictions from this correct

model. This offers a transparent resolution of the Bayes consensus problem.

Moreover, the many layers of a neural net as commonly used in Deep Learning can

be put together in any combination as individual machines in a crowd. Given sufficient

data, the crowd will optimize over the entire collection of Deep Learning models.

Finally, it is notable that by using synthetic features, as mentioned above, the optimal

crowd allows individual machines in the family to learn from each other. And this is

another topic for future work. For further information, refer to additional notes in [12].

Appendix 1
The Python libraries SciPy and scikit-learn were used in this project.
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