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Abstract

Background: Technological advances enable the cost-effective acquisition of Multi-
Modal Data Sets (MMDS) composed of measurements for multiple, high-dimensional
data types obtained from a common set of bio-samples. The joint analysis of the
data matrices associated with the different data types of a MMDS should provide a
more focused view of the biology underlying complex diseases such as cancer that
would not be apparent from the analysis of a single data type alone. As multi-modal
data rapidly accumulate in research laboratories and public databases such as The
Cancer Genome Atlas (TCGA), the translation of such data into clinically actionable
knowledge has been slowed by the lack of computational tools capable of analyzing
MMDSs. Here, we describe the Joint Analysis of Many Matrices by ITeration (JAMMIT)
algorithm that jointly analyzes the data matrices of a MMDS using sparse matrix
approximations of rank-1.

Methods: The JAMMIT algorithm jointly approximates an arbitrary number of data
matrices by rank-1 outer-products composed of “sparse” left-singular vectors (eigen-
arrays) that are unique to each matrix and a right-singular vector (eigen-signal) that is
common to all the matrices. The non-zero coefficients of the eigen-arrays identify small
subsets of variables for each data type (i.e., signatures) that in aggregate, or individually,
best explain a dominant eigen-signal defined on the columns of the data matrices. The
approximation is specified by a single “sparsity” parameter that is selected based on
false discovery rate estimated by permutation testing. Multiple signals of interest in a
given MDDS are sequentially detected and modeled by iterating JAMMIT on “residual”
data matrices that result from a given sparse approximation.

Results: We show that JAMMIT outperforms other joint analysis algorithms in the
detection of multiple signatures embedded in simulated MDDS. On real multimodal
data for ovarian and liver cancer we show that JAMMIT identified multi-modal
signatures that were clinically informative and enriched for cancer-related biology.

Conclusions: Sparse matrix approximations of rank-1 provide a simple yet effective
means of jointly reducing multiple, big data types to a small subset of variables that
characterize important clinical and/or biological attributes of the bio-samples from
which the data were acquired.
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Background
Advances in array technology, high-throughput sequencing, and clinical imaging plat-

forms enable the measurement of ten’s of thousands of variables of a specific data type

in a fixed set of tissue samples [1–4]. Such “big” data types include genome-wide mea-

surements of messenger RNA (mRNA) and microRNA expression, DNA methylation,

single nucleotide polymorphisms (SNPs), next-generation sequence data, and quantita-

tive features extracted from Positron Emission Tomography (PET) images.

The measurement of p > 1 variables of a given data type obtained from a collection of

n > 1 samples can be organized into a p × n data matrix D with rows representing vari-

ables and columns representing measurements of the p variables in each of the n sam-

ples. For big data types we have p ≫ n, making such “tall and thin” matrices difficult to

analyze using standard statistical techniques due to a severe multiple comparisons

problem and low Signal-to-Noise Ratio (SNR) [1, 5, 6]. The low SNR is due in large part

to the relatively small number of variables (out of many thousands measured) that truly

represent a Signal of Interest (SOI) in the data that is associated with an important bio-

logical and/or clinical attribute of the samples. In this context, we are interested in

selecting s > 0 rows of D that best approximate a dominant SOI in the row-space of D

that may represent a clinically and/or biologically significant attribute of the samples.

We call this subset of variables a signature in D, and if D is big, then we assume that

the signature is “sparse” in D, i.e., s ≪ p.

MMDSs pose even greater analytical challenges since the goal is to jointly analyze two

or more data matrices in an integrated manner, which exacerbates problems related to

data dimensionality and SNR ‘[1, 2, 7]. As before, the goal is to detect sparse signatures

for each data type that individually, or in combination, explain a SOI that characterizes an

important biological and/or clinical attribute of the samples. Unfortunately, the lack of

analytical tools for the joint analysis of multiple data types has slowed the discovery of

novel predictive biomarkers and therapeutic targets that account for interactions between

networks of diverse molecular species across space and time. Falling data acquisition costs

have resulted in MMDS accumulating at an exponential rate in academic research labora-

tories, private industry, and public data repositories such as The Cancer Genome Atlas

(TCGA) and the International Cancer Genome Consortium (ICGC) [3, 8, 9]. This growing
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inventory of multi-modal data presents a major analytical bottleneck in the translation of

big, genomic data sets into clinically actionable knowledge.

Formally, the measurements for K > 1 different data types collected from a common

set of n biospecimens, Sn = {ς1, ς2,…, ςn}, can be represented by a collection of K data

matrices, D ¼ Dkf gKk¼1 , where: i) Dk is the pk × n data matrix representing measure-

ments for the kth data type; and ii) at least one of the Dk is big, i.e., pk > > n. We as-

sume that each Dk has been appropriately pre-processed as function of its data type.

For example, pre-processing of mRNA data would likely involve log2-transformation,

quantile normalization, and row-centering, while a methylation data matrix would be

transformed from Beta-values to M-values prior to normalization and row-centering

[10, 11]. Following Friedland and others [12–14], let D ¼ D Dð Þ be the p × n super-

matrix that vertically “stacks” each of the pre-processed pk × n matrices Dk∈D along

their columns where p = ∑k = 1
K pk. We assume that D is appropriately scaled by its Fro-

benius norm to account for differences in the number of rows and dynamic range of

the different Dk’s. Then the joint analysis of D involves the identification of s > 0 rows

of the super-matrix D that models a univariate SOI in the row-space of D as a linear

combination of the selected rows. The set of s variables associated with the selected

rows define a Multi-Modal SIGnature (MMSIG) of D denoted by ζ where s = dim(ζ).

If the SOI is highly correlated with an important biological or clinical attribute of the

samples, then ζ explains and helps to interpret the sample attribute of interest in

terms of the selected variables. Note that since D is big (i.e., p > > n), we want ζ to be

sparse in D, (i.e., s ≪ p) to facilitate downstream interpretation and model validation.

[15].

Matrix approximations of rank-1 provide an efficient way of jointly analyzing the

matrices of D [16–18]. For example, assume the super-matrix D has rank R > 0 and let

D = ∑r = 1
R urσrvr

T be the Singular Value Decomposition (SVD) of D where: a) ur ∈ℝ
P is

the rth left-singular vector (i.e., the rth eigen-array); b) vr ∈ℝ
n is the rth right-singular

vector (i.e., the rth eigen-signal); and c) σr ∈ℝ is the rth singular value for i = 1, 2,…, R.

Then the outer-product, u1σ1v1
T, is the best rank-1 approximation of D in a least

squares sense and v1 represents the dominant SOI on the columns of D that is linearly

modeled in terms of the p rows of D weighted by the “loading” coefficients of u1 [16].

Let ζSVD denote the signature that selects the rows of D with non-zero coefficients in

u1. If D is big, then p = dim(ζSVD) is large since the SVD in general assigns a non-zero

loading to each row of D, which poses problems for downstream validation and inter-

pretation of v1 in terms of the p variables of ζSVD.

Instead, we apply the BET ON SPARSITY (BEST) principle that states that if p > > n,

then it is best to assume that v1 is sparsely supported by a small number of rows of D,

and employ an ℓ1 penalty to identify these rows [19]. If the sparsity assumption is true,

then v1 will be optimally modeled by the selected rows; otherwise no method will be

able to recover the underlying model without many more samples (i.e., Bellman’s curse

of dimensionality [20].) Taking the BEST approach, we developed the Joint Analysis of

Many Matrices by ITeration (JAMMIT) algorithm that approximates D by the rank-1

outer-product, D ≈ uvT, where u ∈ℝp is a sparse eigen-array of “loading” coefficients

and v ∈ℝn is non-sparse, eigen-signal of “scores” that potentially explains an important

biological and/or clinical attribute of the samples [21, 22]. The algorithm uses an

“asymmetric” version of the Least Absolute Shrinkage and Selection Operator (LASSO)
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that regularizes u but not v as a function of a ℓ1 penalty term selected based on false

discovery rate (FDR). The small number of non-zero coefficients of u define a sparse

MMSIG in D that supports a s-dimensional, linear model of v such that s ≪ p. Since a

given MMDS is likely to contain multiple SOIs of biological or clinical relevance, the

JAMMIT algorithm is iteratively applied to the residuals of the current model to iden-

tify and select any additional SOI that may be present in the data (see Methods Section

under The JAMMIT algorithm for more details). Figure 1 shows a specific instance of a

JAMMIT analysis of three big data types for ovarian cancer downloaded from TCGA.

Here, the information processing flows from left to right in five steps illustrating how

three large data matrices are reduced to three relatively small type-specific signatures

shown in step 4. Also shown is post-JAMMIT processing illustrating the additional

pathway and matrix analysis that is needed to further reduce signature dimensionality

without the loss of information. We note that the entire processing chain results in

mRNA signatures that associate immune checkpoint signaling in the tumor micro-

environment with response to chemotherapy.

Fig. 1 JAMMIT analysis of global mRNA, microRNA, and methylation data from 291 ovarian tumors from TCGA.
This workflow focuses on iteration #1 of a JAMMIT analyses of a MMDS composed of three large data matrices
that was reduced in a step-wise fashion to a 12-gene signature (see Results and discussion for more details).
This mRNA signature was found to be predictive of overall survival and enriched for biology associated
with immunological response in the tumor microenvironment. Step 1) Heat maps of mRNA, microRNA
and DNA methylation data matrices assembled and pre-processed for input to JAMMIT algorithm. Step 2)
JAMMIT analysis with minus-one cross-validation. Step 3) Scatter plots of sparse eigen-arrays generated
by JAMMIT for each data type. Note that most of the variables for each data type have zero weighting.
Step 4). 2-way hierarchically clustered heatmaps of each type-specific signature selected by the non-zeros
coefficients of the corresponding sparse eigen-array. Note each heatmap enables the visual identification
and extraction of coherent “metavariables” composed of type-specific variables that exhibit coordinated
patterns of variation. Step 5) The mRNA meta-variable signature is further reduced using IPA and the SVD
to arrive at a 12-gene expression signature that was regulated upstream by IL4. Subsequent eigene-survival
and pathway analysis of the 12-gene signature established a connection between overall survival of patients
with stage 3 disease being treated with platinum-based chemotherapy plus taxane and the distribution of the
M1 and M2 macrophage phenotypes in the tumor micro-environment
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Other methods based on matrix factorizations have been proposed for the joint ana-

lysis of multiple data types such as the Generalized Singular Value Decomposition

(GSVD), Joint and Individual Variation Explained (JIVE), DISCO-SCA, Partial Least

Squares (PLS), and Canonical Correlation Analysis (CCA) [12, 13, 18, 23–25]. These

methods suffer from the same problem as the SVD in that they minimize the ℓ2 norm

of the estimation error and assign non-zero weights to all p rows of D [26]. A number

of techniques can be used to reduce the dimensionality of the selected model such as:

i) rotation of principal components as implemented in factor analysis; ii) ignoring load-

ings smaller than some threshold; and iii) restricting the range of the loadings to a

small discrete set of values [21, 27]. Unfortunately, these methods are prone to high

false positive rates and poor sensitivity especially in situations where the SNR is low.

Regularized versions of Principal Components Analysis (PCA), SVD, CCA, and PLS

have been proposed for sparse signal detection and dimensionality reduction, but appli-

cation of these methods to the super-matrix that “stacks” an arbitrary number of data

matrices is not explicitly discussed [21, 26, 28–30]. Finally, many of the methods out-

lined above focus on maximal rank-k approximations of D where k is significantly

greater than one, which precludes the use of resampling methods in the selection of

the best ℓ1 penalty due to the high computational cost [30].

In what follows, we describe in greater detail a workflow for the joint analysis of mul-

tiple data types based on the JAMMIT algorithm. A section on methods provides tech-

nical detail on the algorithm and the computational tools used to evaluate the

statistical significance, biological coherence, and clinical relevance of JAMMIT-derived

signatures. We then present and discuss results of: 1) a study that compared JAMMIT

detection performance against that of other joint analysis algorithms on simulated data;

ii) a JAMMIT analysis of global mRNA, microRNA and DNA methylation data for

ovarian cancer down-loaded from TCGA; and iii) a JAMMIT analysis of whole-genome

mRNA data for liver cancer supervised by quantitative features derived from PET im-

aging data. A discussion and conclusions are presented in a final section.

Methods
Joint Analysis of Many Matrices by Iteration (JAMMIT)

Let D = {Dk}k = 1
K denote a collection of pk × n data matrices Dk that represents a MMDS

acquired from a common set of n biospecimens, Sn = {ς1, ς2,…, ςn}. Let D = stack(D) de-

note the p × n super-matrix of D where p = ∑k = 1
m pk. We assume that at least one Dk is

big, so that the super-matrix D is also big. We assume each Dk has been individually

pre-processed as a function of its data type as discussed in the previous section

and that D is scaled by its Frobenius norm such that if D ¼ dij
� �

is a p� n matrix, then

D←D ∙ ∕ Dk kFrob where: 1) Dk kFrob ¼
P

i

P
j dij

�� ��2� �1
2=

is the Frobenius norm of D; and

2) D= Dk kFrob ¼ dij ∕ Dk kFrob
� �

.

For λ > 0, the JAMMIT algorithm generates following rank-1 approximation of D

D≈u λð Þ v λð Þð ÞT ¼ uvT ð1Þ

by minimizing the error function
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E u; v; λð Þ ¼ D−uvT
�� ��2

Frobþλ uk kℓ1 ð2Þ

subject to the constraint

v ¼ DTu ð3Þ

where: 1) uvT ∈ ℝp × n is the outer product of u ∈ℝp and v ∈ℝn; 2) u is sparse relative to

p, i.e., s≪p; 3) v represents a SOI on the columns of D; 4) λ > 0 is an ℓ1 penalty on u;

and 5) uk kℓ1 ¼
Xp

i¼1
uij j is the ℓ1 -norm of u ∈ℝp. Starting with an initial ℓ2 approxi-

mation (u(0), v(0)) based on the SVD of D such that D ≈ u(0)(v(0))T, JAMMIT first obtains

a ℓ1 -regularized solution vector u(1) ∈ℝP defined by

u 1ð Þ ¼ argmin
u∈ℝP

E u; v 0ð Þ; λ
� �� �

; ð4Þ

then substitutes this solution in (3) to obtain v(1) ∈ℝn and the solution (u(1), v(1)) that

satisfies D = u(1)(v(1))T. Hence, the equality constraint in Eq. (3) ensures the outer prod-

uct uvT in Eq. (2) represents a rank-1 approximation of D under the ℓ1 norm. This pro-

cedure is repeated by alternating between (2) and (3) until the sequence (u(i), v(i))

converges to a solution (u, v) based on the error function given in (2) such that

v ¼ DTu ¼
Xm

k¼1
DT

k uk : ð5Þ

Let ζ(λ) ∈ℝs denote the MMSIG with non-zero entries that correspond to s ¼ s ζð Þ
> 0 rows of D that support the sparse linear model in (5) as a function of λ. We note

that: i) λ = 0 implies that (1) is the best rank-1 approximation of D based on the SVD;

ii) λ > 0 implies that (1) is a ℓ1 -regularized, rank-1 approximation of D such that s =

dim(ζ) ≤ p; and iii) there exists λsup > 0 such that 0≤s≤p if λ∈ 0; λsupð Þ. We show empiric-

ally that for simulated and real multi-modal data, one can find λ* ∈ (0, λsup) based on

an empirical estimate of FDR such that ζ(λ*) is sparse in D, i.e., s(λ*) = s* < < p.

Equation (5) suggests that parsing the vector u according to the order in which the

Dk’s were stacked in D results in individual rank-1 approximations

Dk≈ukvT for k ¼ 1; 2;…;m ð6Þ

where uk∈ℝsk is unique to each Dk and v represents the SOI in (1) that is shared by each Dk.

Eq. (6) implies that the MMSIG ζ* = ζ(λ*) = ζ*(D) can be similarly parsed into type-specific

signatures ζk
* = ζ*(Dk) according to the stacking order of the Dk’s in D that explain v in terms

of the kth data type only. Moreover, we have observed empirically that the sparsity of ζ*

implies that the type-specific signatures ζk
* in Dk are also sparse if Dk is big. Moreover, ana-

lysis of simulated and real MMDSs show that the algorithm will still select significant rows

of Dk even if Dk is not big. Table 1 outlines the key steps of a single iteration of the JAMMIT

algorithm for computing joint rank-1 approximations of each Dk of a given super-matrix D.

Note that JAMMIT detects and models the most dominant SOI in D and that weaker

SOI of biological and/or clinical importance could be present in D that are masked by

the dominant SOI. Hence, we “residualize” D by

D′ ¼ D−uvT ð7Þ

and use JAMMIT to sparsely model the most significant SOI in D′ [18]. This pro-

cedure is iterated until no statistically significant MMSIG are detected and
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modeled. In any case we hypothesize that the number of iterations is bounded by

R� ¼ mink rank Dkð Þ½ �.

Selecting an ℓ1 penalty based on false discovery rate (FDR)

For actual experimental data, empirical FDR was used to select an ℓ1 penalty that re-

sults in a MMSIG of desired size and statistical significance. Briefly, FDR was estimated

for a monotone increasing sequence of λ’s denoted by

Λ ¼ 0 ¼ λ1 < λ2 < … < λl < … < λL < ∞f g ð8Þ

such that λ1 = 0 results in the MMSIG provided by the SVD and λL is the smallest λ

that results in a MMSIG of length zero. The presence of statistically significant row-

correlations between the matrices of D is indicated by a sequence of total FDR values,

Θ Λð Þ ¼ Θ λ1ð Þ;Θ λ2ð Þ;…;Θ λSup
� 	
 � ð9Þ

that decreases rapidly as a function of increasing λ. In this case, a λ* ∈Λ can be selected

such that: a) Θ(λ*) ∈Θ(Λ) is a local minimum that is smaller than some pre-

determined threshold; and b) the resulting signature, ζ* = ζ(λ*), is sparse in D. Con-

versely, a FDR sequence, Θ(Λ), that fails to decrease fast enough may preclude the se-

lection of a λ* ∈Λ that is less than a pre-determined threshold and suggests a lack of

support from one or more of the Dk′s for the SOI. Note that a “joint” FDR sequence,

Θ(Λ), can be decomposed into a collection of type-specific FDR sequences, Θ(Λ)

= {Θk(Λ)}k = 1
K based on the stacking order of the Dk’s in D. Here, Θk(Λ) represents the

FDR sequence for the kth sub-signature, ζk
* of ζ* (see Additional file 1). Again, the pres-

ence of a sparse subset of variables in Dk that support the common SOI in a statistically

significant way is signaled by a rapidly decreasing sequence of FDR values in Θk(Λ),

while the absence of any row-support is indicated by a slowly decreasing FDR se-

quence, Θk(Λ), for k = 1, 2,…, K. It follows that if all Dk sparsely support the SOI, then

all Θk(Λ) will rapidly decrease in unison for increasing λ . Additional file 1 provides

more detail on how the FDR sequences Θ(Λ) and Θk(Λ) were generated.

Table 1 JAMMIT optimization algorithm

1. Let D ¼ D1; ;D2;⋯; ;DKf g be a MMDS

2. Form pre-processed super-matrix D ¼ stack Dð Þ.
3. Compute best rank-1 approximation, u0; ; v0ð Þ of D such that D≈u0vT0 .

4. Compute ℓ1 -regularization u1 of u0: u1 ¼ argminu D−uvT0
�� ��2

2þλ uk k1
� �

.

5. Compute v1 ¼ DTu1 to obtain solution u1; ; v1ð Þ.
6. Assign u0←u1 and v0←v1.

7. Repeat steps 4–6 until convergence to final solution u; vð Þ where v ¼ DTu.

8. Form MMSIG ζ composed of variables selected by the non-zero entries of u.

9. Parse ζ according to stacking order of the Dk in D to obtain ζk for each Dk .

10. Parse u according to stacking order of Dk in D to obtain uk for each Dk .

11. Compute sequence of sparse rank-1 approximations ̂D ¼ ̂D1; ; ̂D2;⋯; ; ̂DKf g where ̂Dk≈ukvT for k ¼ 1
; 2;⋯;K .

Okimoto et al. BioData Mining  (2016) 9:24 Page 7 of 28



Simulated data

The detection performance of JAMMIT and other joint analysis algorithms were evalu-

ated on 1000 simulated MMDS using Receiver Operating Characteristic (ROC) analysis

(see sub-section below entitled Area under the ROC curve as a function of the ℓ1 pen-

alty parameter). Simulated MMDS, D(η) = {Dk
(η)}k = 1

2 = {(Σk
(η) +Νk

(η))}k = 1
2 , for η = 1, 2,…,

1000 were generated where p1 and p2 were randomly selected from P = {1000, 2000,…,

10000}. Here, Σk
(η) and Νk

(η) represent simulated signal-only and noise-only data matri-

ces, respectively, of dimensions pk
(η) × 50 for k = 1, 2 and η = 1, 2,…, 1000. For each η,

the super-matrix D(η) = stack(D(η)) = Σ(η) +Ν(η) was assembled where: 1) p(η) = p1
(η) + p2

(η);

2) Σ(η) = stack(Σ1
(η), Σ2

(η)); and 3) Ν(η) = stack(Ν1
(η),Ν2

(η)).

The support of Σk
(η) in Dk

(η), denoted by Supp(Dk
(η)), corresponds to the non-zero com-

ponents of Iη = stack(Ik
(η)(step), Ik

(η)(rand)) that identify the rows of Dk
(η) that contain sig-

nals SS1 or SS2 defined on the 50 columns of each super-matrix D(η). Here, SS1 and

SS2 represent step and random functions defined on the columns of the super-matrix

D(η). The signal-to-noise ratio (SNR) of D(η) in decibels is given by SNR D ηð Þ� 	 ¼ 10

� log10
var

⌢
Σ ηð Þ

� 	
var

⌢
Ν ηð Þ

� 	
� 


where
⌢
Σ ηð Þ; ⌢Ν ηð Þ∈ℝ50p represent vectorized versions of Σ(η) and Ν(η),

respectively. The goal of each simulation is to detect Supp(D(η)) such that the true positive

rate is maximized for a given false positive rate over a wide range of SNR scenarios. Add-

itional file 2 provides more detail on the generation of simulated signal-only and noise-

only data matrices, Σk
(η) and Νk

(η), respectively, for η = 1, 2,…, 1000.

Area under the ROC curve as a function of the ℓ1 penalty parameter

JAMMIT analysis of a simulated stacked matrix requires the specification of an ℓ1 penalty

parameter λ > 0 in eq. (2), which results in a signature ζ(λ) such that s = dim(ζ(λ)). We

note that the regularized minimization of (2) is equivalent to the un-regularized

minimization of E(u, v) = ‖S − uvT‖2
2 constrained by ‖u(λ)‖1 ≤ 1/λ, where the ℓ1 -parameter

λ behaves like a threshold on the components of u(λ) ∈ℝp such that larger values of λ

result in lower-dimensional signatures [22, 31]. Hence, for a given simulated MMDS

and λ > 0, we can compute the sensitivity and specificity of JAMMIT to detect a signa-

ture in D that supports a simulated SOI in the row-space of D. Consider the monotonic-

ally increasing sequence of λk ' s (denoted by Λ) defined in (8). We compute the sensitivity

and specificity for each λ∈Λ and plot sensitivity (true positive rate) vs. 1 � specificity (i.e.,

false positive rate) parameterized by λ to generate a ROC curve. Area Under the ROC

(AUROC) can then be used to quantify the ability of JAMMIT to detect the true support

for a simulated signal embedded in a simulated super-matrix D. The detection perform-

ance of JAMMIT or any other detection algorithm can be compared by computing the

difference between the AUROC values for JAMMIT and an alternative algorithm

(ΔAUROC). A positive ΔAUROC value implies JAMMIT outperformed the alternative

algorithm; otherwise the alternative algorithm outperformed JAMMIT.

Analysis of multi-modal data for ovarian cancer downloaded from TCGA

Genome-wide mRNA, microRNA and DNA methylation data obtained from 291 tumor

samples from patients with clinical stage 3 serous ovarian cancer were downloaded
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from TCGA (http://cancergenome.nih.gov/). This data download resulted in three

high-dimensional data matrices of dimensions 16020 × 291 (mRNA), 799 × 291 (micro-

RNA) and 15418 × 291 (DNA methylation), each of which were log-transformed,

quantile-normalized, centered, and scaled by their respective Frobenius norms prior

to formation of an ovarian MMDS denoted by DOVCA. Clinical meta-data for each

patient were also downloaded from TCGA and aligned with the columns of the

super-matrix of DOVCA. These data included censored survival time, age, stage, and

treatment information. Subsequent to formation of DOVCA, additional whole-

genome mRNA data for tumors obtained from 99 patients with Stage 3 disease were

downloaded from TCGA along with associated clinical metadata. These data were

organized to form a mRNA data matrix that was used to assess the robustness of

any associations with overall survival with mRNA expression patterns found in the

discovery data set represented by DOVCA.

JAMMIT analysis of transcriptomic and PET imaging data for liver cancer

Twenty patients referred for surgical resection of liver tumors were prospectively

recruited to participate in an institutional review-board approved clinical research study

with written informed consent. Prior to surgery, these patients underwent liver imaging

with a Philips Gemini TF-64 PET/CT scanner (Philips Healthcare, Andover, Massachusetts)

using 18F-fluorocholine under an investigational new drug protocol. In a previous single-

institution clinical trial, 18F-fluorocholine, a tracer of choline phospholipid synthesis, affords

PET/CT with relatively high diagnostic sensitivity for HCCs [32, 33]. Presently, less is

known regarding the diagnostic utility of 18F-fluorocholine for ICCs and other sub-

types of liver cancer. Regions of interest (ROI) analysis of the PET/CT images were

used to generate time activity curves corresponding to: 1) the arterial pool in the

descending aorta; and 2) areas of tissue within the liver that corresponded to the

tumor and adjacent liver samples profiled by expression arrays. PET kinetic analysis

was then applied based on a 2-tissue compartment (2TC) model of 18 F-fluorocholine

pharmacokinetics in liver tumor and liver tissue [34, 35]. Pharmacokinetic parameters

K1; k2; k3; k4; K1=k2 , and Flux for each 2TC model corresponding to each sample

were estimated using PMOD 3.4 (PMOD Technologies, Zurich Switzerland) and as-

sembled to form a 6� 50 Pet kinetics data matrix for the 50 tissue samples included

in the experiment.

Tumor and adjacent non-tumor liver tissue specimens were obtained subsequently

during surgery, and RNA was extracted from homogenized frozen tissue lysates in

RLT Plus buffer with the AllPrep DNA/RNA Mini kit (Qiagen, Valencia, CA) follow-

ing manufacturer’s protocol. The isolated RNA was stored at -8000 until used. The

quality of the total RNAs was checked on a Bioanalyzer using RNA 6000 Nano chips

(Agilent, Santa Clara, CA). The RNA samples were processed following the WG-

DASL assay protocol (Illumina Inc., Sunnyvale, California) and the resulting PCR

products were hybridized onto the Illumina HumanHT-12 v4 Expression BeadChips

included over 24,000 transcripts with genome-wide coverage of well-characterized

genes, gene candidates, and splice variants. Arrays were scanned using the iScanTM

instrument and expression levels were quantified using GenomeStudio software

(Illumina Inc., Sunnyvale, CA).
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Gene-level expression values were assembled to form a 20792 × 50 data matrix

where the rows represented 20792 genes and columns represented 50 adjacent-

normal and tumor samples obtained from 20 patients. Here, columns 1–20 of the

data matrix represented adjacent-normal samples while columns 21–50 represented

30 liver tumors of which 22 were hepatocellular carcinomas (HCCs), 6 were intra-

hepatic cholangiocarcinomas (ICC) and 2 were sarcomas. The data matrix was pre-

processed by generalized log2 transformation with background subtraction, quantile

normalization, and row centering [36].

Eigen-survival analysis

Let D be a p� n data matrix where p≫n and let ζ Dð Þ denote the s × n sub-matrix of D

composed of rows from D that correspond to the variables (i.e., matrix rows) of a

JAMMIT-derived signature ζ. Alternatively, the columns of ζ(D) can be viewed as “real-

izations” of the signature ζ in each of the n patients used to formulate D. Let Ω(D) be a

2 × n survival data matrix for D where the 1st row contains observed time-to-death for

the n patients of D and the 2nd row is a binary indicator of censorship for each patient

(0=uncensored, 1=censored). We extracted an Eigen-Survival Model (ESM) based on

the SVD of ζ(D) to reduce the negative impact of random noise and systematic errors

on the prediction of overall survival [37, 38]. The ESM was then used to compute prog-

nostic scores for each patient, and patients with scores in the top and bottom quartiles

of scores were identified. The signature ζ(D) was predictive of survival if and only if

differences in survival between patients with scores in the top and bottom quartiles

were significant in both the KM and Cox regression models with p-value of 0.05 or less.

Additional file 3 provides more detail on the workflow used to extract an ESM for a

given signature.

Ingenuity Pathway Analysis (IPA)

Ingenuity Pathway Analysis (IPA, QIAGEN Redwood City, California) was used to rap-

idly profile a given mRNA signature for enrichment in genes, canonical pathways, bio-

logical processes and upstream regulators related to cancer. In particular, IPA’s

Upstream Regulator Analysis (IPA/URA) feature was used to decompose a given

JAMMIT-derived signature into lower-dimensional sub-signatures composed of genes

that are targeted by a single upstream regulatory molecule. In this analysis, an upstream

regulator can be a chemokine, cytokine, transcription factor, drug, etc. and IPA com-

putes an activation score and intersection p-value for the targeted subset of genes. The

activation score measures the consistency between the observed effect of the predicted

regulator on the targeted variables in our data and the predicted effect based on current

knowledge as encoded in IPA. The intersection p-value measures the probability

of a chance association between the predicted upstream regulator and its downstream

targets that reside in a given signature. Note that a predicted upstream regulator

does not have to be a member of the signature. Activation scores greater than 2.0

and p-values less than 1.0E-03 are considered significant. Signatures that are

“anchored upstream” in this way inherit the function of this regulator and are thus

easier to interpret biologically. IPA also generates hypotheses regarding the genes
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and pathways that may explain the downstream effects of a given signature on biological

and disease processes.

Results and discussion
JAMMIT performance on simulated data

The effectiveness of JAMMIT to detect multiple signals in simulated data sets was

evaluated and compared to other algorithms such the JIVE and PLS. JIVE is a

generalization of Principal Components Analysis (PCA) to multiple data matrices. Like

JAMMIT, PLS enables the supervised analysis of one matrix by another matrix and is

also used for the analysis high-dimensional data sets [24]. All three algorithms were ap-

plied to the same collection of 1000 simulated MDS’s (see Methods section, Simulated

Data) and tasked to detect two sparsely supported signals, SSig1 and SSig2, that were

embedded in the data matrices of each simulation over a wide-range of SNR scenarios.

SSig1 represents a noisy signal for differential expression that distinguishes the first 25

samples of the simulation from the last 25 samples. SSig2 on the other hand represents

a random signal that is sparsely supported by rows in both data matrices that repre-

sents an unmeasured and/or unknown biological attribute of the samples.

The goal of each simulation is to detect the sparse support of SSig1 and SSig2 in each

simulated data matrix. Figure 2 shows distributions of ΔAUROC values that compares

the ability of JAMMIT to detect the support of SSig1 and SSig2 versus that of JIVE and

PLS in 1000 data simulations. For example, the first row of plots shows that the distri-

butions of ΔAUROC values for SSig1 and SSig2 are concentrated on the positive real

Fig. 2 Distribution of ΔAUROC values comparing JAMMIT detection performance with two other algorithms in
simulated data. Panels a and b show the distributions of ΔAUROC values equal to the AUROC for JAMMIT minus
the AUROC for JIVE for the detection of two simulated signals, SSig1 and SSig2, in 1000 simulated MMDS as
described in the Methods section of this paper. Similarly, panels b and c show ΔAUROC distributions for JAMMIT
versus PLS to detect SSig1 and SSig2 in the same set of simulated MMDS used to evaluate JAMMIT versus JIVE.
Each ΔAUROC distribution was based on a normal kernel smoothing function evaluated at 100 equally spaces
points using MATLAB’s ksdensity function. Note for each distribution, the area under the distribution curve is equal
to one and most of this area (i.e., probability measure) is concentrated on the positive x-axis to the right of the
vertical green line positioned at x ¼ 0. This result indicates that on average JAMMIT outperformed both JIVE and
PLS in detecting the two simulated signals over a wide range of SNR scenarios
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axis. This means that the AUROC values for JAMMIT exceeded that of JIVE more fre-

quently than not for SSig1 and SSig2, with p-values of 4.33.E-15 and 1.99E-73, respect-

ively. Similarly, the second row of plots shows that the area under the ΔAUROC

distributions for both SSig1 and SSig2 is concentrated on the positive real numbers

indicating that JAMMIT outperformed PLS significantly more often than not over

1000 data simulations with p-values of 1.68E-10 and 6.39E-61, respectively. Hence,

relative to JIVE and PLS, we see that JAMMIT compares favorably in terms of ability

to detect the sparse support of a step and random signal in multiple, high-

dimensional data sets.

JAMMIT analysis of ovarian cancer data from TCGA

A MMDS composed of global mRNA, microRNA and DNA methylation data obtained

from 291 ovarian tumors resected from patients with stage 3 disease were downloaded

from TCGA and jointly analyzed using JAMMIT. The goal was to determine if MMSIG

exist that distinguished subtypes of ovarian cancer that lead to different clinical out-

comes. Leave-One-Out Cross-Validation (LOOCV) based on JAMMIT was applied to

D to identify a MMSIG for ovarian cancer that was robust to minus-one perturbations

of the 291-sample discovery data set. First, a sequence of FDR values for a monoton-

ically increasing sequence of ℓ1 penalty values was computed based on the JAMMIT

analysis of 100 permuted versions of the super-matrix, D (see Methods section). An

ℓ1 penalty parameter of λ291 = 0.002875.was selected based on an FDR of 0.0034619

that was a local minimum, which resulted in an mRNA signature ζmRNA
(0) composed of

643 genes, a miRNA signature ζmiRNA
(0) composed of 368 microRNAs (FDR= 0.19912),

a methylation signature ζMeth
(0) composed of 450 methylation loci (FDR = 0.03038), and

a MMSIG ζ(0) composed of 1461 mRNA, miRNA and methylation variables that were

“stacked” in the order of the Dk’s in D ( FDR = 0.067647) (see Additional file 4).

For the LOOCV analysis, the jth column of each Dk of D was removed to obtain

minus-one MMDSs, D(j) = {Dk
(j)}k = 1

3 , and minus-one stacks, D(j) = stack(D(j)) for j = 1, 2,

…, 291. JAMMIT was then applied to each D(j) with λ291 = 0.002875, which resulted in

sj -dimensional, minus-one MMSIGs, ζ(j), for j = 1, 2,…, 291. On average, each ζ(j) reca-

pitulated 98 % of the s0 variables of ζ(0) over all 291 minus-one analyses implying that

JAMMIT-derived signatures based on λ = λ291 are robust to minus-one perturbations of

the discovery data set. A single MMSIG defined by ζ ¼ ∩j ζ
jð Þ was generated, which de-

fined sub-signatures composed of 534 mRNAs (ζ1), 337 microRNAs (ζ2) and 357

methylation loci (ζ3) common to all 291 minus-one MMSIGs.

Each type-specific signature obtained by JAMMIT was analyzed individually and in

various combinations using hierarchical cluster analysis to identify “metagenes”, i.e.,

subsets of variables that exhibited coordinated, low-frequency variation of expression

over the 291 samples of the discovery data set. Such coherent variation offers the best

opportunity to identify novel, low-dimensional signatures that capture important bio-

logical and/or clinical attributes of the tumor samples. Figure 3 shows hierarchically

clustered heatmaps of the three type-specific signatures, ζ1, ζ2, and ζ3, for mRNA,

microRNA and methylation, respectively, and a MMSIG, ζ13, that “stacked’ the mRNA

and methylation signature. Here, the subscript “13” denotes the concatenation of the

mRNA (1) and methylation (3) signatures derived by JAMMIT. This particular
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combination was chosen because the FDR values for ζ1
(0) and ζ3

(0) were highly significant

compared to ζ2
(0), which implied the type-specific signatures ζ1 and ζ3 best explained the

common SOI shared by all three different data types. Visual examination of Fig. 3a-c

shows that the clustered heatmaps for each type-specific signature contained meta-

variables composed of matrix rows that exhibited coordinated patterns of variation, some

of which are highlighted in yellow or green. In particular, the clustered heatmap for ζ13 in

Fig. 3d contained the metagene, γ, (highlighted in green) that defined a MMSIG com-

posed of 249 variables of which 209 were mRNAs (γ1), and 40 were methylation loci (γ3).

Figure 4 shows that the MMSIG, γ, and the type-specific sub-signatures, γ1, and γ3 were

all significantly associated with overall survival on the 291 discovery samples contained in

Sn. Interestingly, the signature that combined the mRNA and methylation variables had a

more significant association with survival than signatures that contained only mRNA or

only methylation variables based on log-rank and Cox regression p-values, median sur-

vival time, and 5-year survival rate.

To further reduce signature dimensionality and to better understand the biology that

underlay the association of γ with overall survival, we focused subsequent downstream

analysis and interpretation on the 209-gene mRNA signature, γ1, using IPA. In particu-

lar, the Upstream Regulator Analysis (URA) feature in IPA was used to identify sub-

signatures of γ1 that were “anchored” upstream by a single regulating molecule. Table 2

shows that Interleukin 4 (IL4) was the top upstream regulator of γ1 that directly tar-

geted 40 genes (out of 209) in the signature (Score=2.115 p=2.11E-20). Note that acti-

vation scores greater than 2.0 and p-values less than 1.0E-03 are considered significant.

The 40 genes in γ1 directly targeted by IL4 were used to define a mRNA signature φIL4
(40)

Fig. 3 Clustered heatmaps of sparse signatures for ovarian cancer discovered by JAMMIT. a Heatmap of mRNA
signature with one of three distinct meta-variables highlighted in yellow. b Heatmap of microRNA signature
with two coherent meta-variables highlighted in green and yellow. c Heatmap of methylation signature with
one of two distinct meta-variables highlighted in yellow. d Heatmap of joint mRNA+methylation signature with
one of four distinct meta-variables highlighted in green
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contained in γ1 that was “anchored” upstream by IL4. Figure 5 shows the results of an

eigen-survival analysis based on the realization of φIL4
(40) in the expression data for the

291 patients in the discovery data set. Figure 5a shows the clustered heatmatp of φIL4
(40)

realized in the training data set and Fig. 5b shows KM plots based on prognostic scores

for each patient derived from the ESM extracted from the expression patterns in Fig. 5a.

In Fig. 5b, we see that 144 patients with prognostic scores in the top and bottom quar-

tiles have significantly different KM plots with log-rank p-value of 3.89E-06 (logrankP).

Moreover, a Cox regression model of overall survival based on prognostic scores for all

Fig. 4 Eigen-survival analysis of JAMMIT multimodal signature composed of mRNA and methylation variables
for 291 patients. a KM plots of based on MMSIG composed of mRNA and methylation variables. b KM plots
based on signature composed mRNA variables only. c KM plots based on signature composed of methylation
variables only. Note that p-values, median survival time and 5-year survival rate for the signature that combines
variables for the mRNA and microRNA data types

Table 2 Top Upstream Regulators of mRNA signature γ1 for ovarian cancer

Upstream regulator Predicted state Activation score Intersection P-value Number of targets

IL4 Activated 2.115 2.115E-20 40

OSM Activated 2.616 2.41E-08 21

Stat5(A/B) Activated 2.630 6.50E-08 9

IPA identified IL4 as the top upstream regulator of the γ1 signature that directly targeted 40 genes in the signature (Score=2.115,
p=2.115E-20). These 40 genes formed a mRNA signature, φIL4

(40), that was “anchored” upstream by IL4 with expression patterns
that implied the up-regulation of this gene. Subsequent eigen-survival analysis shows that the φIL4

(40) signature was robustly
associated with overall survival on the 291-sample discovery data set and a 99-sample independent test data set.
Regulation of φIL4

(40) by IL4 linked overall survival of ovarian cancer patients with stage 3 disease to macrophage
polarization in the tumor environment
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291 patients with age as a covariate had a p-value of 1.68E-07 (CoxP), which provides

further validation of the eigen-survival model derived from expression patterns visual-

ized in Fig. 5a. Figure 5c shows the clustered heatmap of the φIL4
(40) signature realized in

whole-genome mRNA data for 99 independent test tumor samples. The prognostic

scores for the 99 test patients were computed by processing the expression patterns

in Fig. 5c using the ESM derived from the expression patterns in Fig. 5a. Figure 5d

shows that test patients with prognostic scores in the top and bottom quartiles have

significantly different survival statistics (logrankP=2.08E-03, CoxP=1.26E-03).

Hence, the ESM based on φIL4
(40) captured information related to overall survival that

was also applicable to the 99-samples of the independent test data set that were un-

seen during discovery.

We further reduced the dimensionality of φIL4
(40) based on the ESM extracted from the

291 discovery samples. Figure 6 shows a plot of the 40 loading coefficients associated

with the ESM derived from expression patterns in Fig. 5a with 12 high magnitude

Fig. 5 40-gene signature φIL4(40) for ovarian cancer anchored upstream by IL4 is robustly associated with survival.
a Clustered heatmap of the mRNA signature φIL4(40) realized in the 291-sample training data set. b KM plots of
patients in training data set with prognostic scores in the top and bottom quartiles based on the eigen-survival
model based on the realization of φIL4

(40) in 291-sample discovery data set. c Clustered heatmap of φIL4
(40) realized

in the 99-sample test data set. d KM plots of patients in unseen test data set with prognostic scores in the top
and bottom quartiles. The prognostic scores for the test patients were obtained by projecting the realization of
φIL4(40) in the test data onto the eigen-survival model for φIL4(40) derived from the discovery data set (green arrows)
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coefficients highlighted in red. The 12 genes corresponding to these coefficients were

assembled to form the mRNA signature, φIL4
(12), that was tested for association with

overall survival on the 291-sample discovery data set and the 99-sample independent

test data set. Figure 7a shows that ESM based on φIL4
(12) in the 291 samples of the discov-

ery data set was significantly associated with overall survival (logrankP=1.54E-05,

Fig. 6 Loading coefficients of eigen-survival model derived from φIL4(40) in the 291-sample discovery data set.
Genes that contribute most significantly to the eigen-survival model derived from the 291-sample discovery
data set are highlighted by red squares. These genes were used to define a 12-gene mRNA signature φIL4

(12)

that was evaluated for association with overall survival and biological coherence

Fig. 7 A 12-gene mRNA signature for ovarian cancer anchored upstream by IL4 predicts overall survival. a KM
plots of patients in discovery data set with prognostic scores based on the 12-gene mRNA signature φIL4(12) in the
top (red) and bottom (blue) quartiles. Note the two groups of 72 patients each (144 total) show significant
differences in survival based on the separation between their respective KM plots. b KM plots of patients in test
data set with φIL4(12) prognostic scores in the top (red) and bottom (blue) quartiles. The two groups of 24 patients
each (48 total) show significant differences in survival based on the separation between their respective KM
plots. Note the prognostic scores for the test patients were computed by projecting the test data matrix for
φIL4(12) onto the ESM derived from discovery data matrix for φIL4(12)
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CoxP=1.06E-04). Moreover, Fig. 7b shows that the ESM based on φIL4
(12) realized in the

discovery data generalizes to the 99 samples of the independent test data set (log-

rankP=9.70E-03, CoxP=4.64E-04). Interestingly, the set of 28 genes in φIL4
(40) comple-

mentary to the genes in φIL4
(12) failed to generalize on the 99 independent test samples.

These results validate the BEST principle as implemented by JAMMIT for the joint

analysis of multiple data sets in ovarian cancer.

Note that IL4 directly targets every gene in φIL4
(12) per IPA. IL4 induces the transform-

ation of Tumor Associated Macrophages (TAMs) that infiltrate the tumor microenvir-

onment into the M2 phenotype, which confers a survival advantage to cancer cells and

promotes tumor growth [39, 40]. An alternative pathway involving Interferon Gamma

(IFNG) and Tumor Necrosis Factor Alpha (TNFA) transform TAMs into the M1

phenotype that exerts a cytotoxic effect on genetically mutated cancer cells. It has been

reported that a high M1/M2 ratio is associated with extended survival in ovarian cancer

patients [39]. This suggests that immune cell polarization in the tumor microenviron-

ment impacts the overall survival of patients with ovarian cancer undergoing standard

platinum-based chemotherapy combined with paclitaxel. Indeed, the φIL4
(12) signature

contains the Chemokine (C-C motif ) Ligand 2 (CCL2) gene, which is a chemokine that

recruits monocytes from the bloodstream to the tumor microenvironment [41]. It has

been reported that CCL2 is up-regulated in ovarian cancer and the blockade of CCL2

protein expression enhances immunotherapeutic and chemotherapeutic response [41].

Imaging-genomics of liver cancer

Whole-genome expression data were collected for 20792 genes in 20 adjacent-normal, 22

hepatocellular carcinoma (HCC), 6 intra-hepatic cholangiocarcinoma (ICC) and 2 sar-

coma samples using DASL microarrays. The expression data were assembled to form a

20792 × 50 expression data matrix where columns 1–20 represented the normal samples

and columns 21–50 represented the tumor samples. The data matrix of raw expression

was pre-processed by generalized log2 transformation, quantile normalization, and row-

centering to obtain the pre-processed expression data matrix HmRNA. The values of six

kinetic parameters, K 1; k2; k3; k4; K 1=k2; Flux obtained from 2TC models for each tissue

sample formed the columns of a 6 × 50 data matrix that was row-centered to obtain the

PET data matrix, HPET. A final pre-processing step involved the scaling of the stacked

matrix HPETX = stack(HmRNA,HPET) by its Frobenius norm. The goal of this analysis is to

identify mRNA signatures that are highly correlated with the rows of the PET kinetic data

matrix [42, 43].

Six different analyses of HmRNA based on JAMMIT were conducted where each

analysis was supervised by a single PET kinetic parameter. That is, JAMMIT was

applied to HPETX
(l) = {HmRNA,HPET

(l) } where HPETX
(l) is a 1-dimensional vector equal to

the l th row of HPET for l = 1, 2,…, 6. Of the six possible analyses, only supervision

by the H 5ð Þ
PETX ¼ K1=k2 kinetic parameter resulted in a FDR profile that implied sig-

nificant joint correlations between HmRNA and HPET (see Additional file 5). A locally

minimal FDR* = 0.000549 was selected from the FDR profile for genes that corre-

sponded to an ℓ1 penalty parameter value of λ* = 0.0089429. A JAMMIT analysis based on

this value of λ resulted in a mRNA signature ω K1=k2ð Þ
mRNA containing 652 genes that was signifi-

cantly correlated with the K1=k2 kinetic parameter. Persistently low FDR values for ω K1=k2ð Þ
mRNA
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as a function of λ implied a significant and robust correlation between ω K1=k2ð Þ
mRNA and the K 1=

k2 PET parameter over a wide-range of sparse, linear models. Moreover, the dominant

eigen-signal of the 652 × 50 signature matrix, ω K1=k2ð Þ
mRNA HmRNAð Þ was significantly correlated

with the K1=k2 PET parameter (r ¼ 0:413; p ¼ 0:00293Þ. In sharp contrast, the FDR pro-

files for JAMMIT analyses of HmRNA supervised by the other PET kinetic parameters failed

to produce an ℓ1 penalty that correlated the two data types (see Additional file 6). Note

these results show that JAMMIT is able to identify significant variables of data types defined

by a small number of variables. Indeed, the data matrix HmRNA described above has 20792

rows, while the PET kinetic data matrix, H 5ð Þ
PETX , has a single row composed of K 1=k2 kinetic

parameter values in 50 samples. Here, the FDR table for the joint analysis of HmRNA and

H 5ð Þ
PETX admits the single row of H 5ð Þ

PETX into the sparse, rank-1 approximation of DPETX
(l) =

stack{HmRNA,HPET
(l) } for almost all ℓ1 parameter values (see Additional files 5 and 6).

Figure 8 visualizes the realization of ω K1=k2ð Þ
mRNA in HmRNA as a row-clustered heatmap

where we see that aggregate gene expression is highly variable on the tumor samples

(columns 21–50) compared to the normal samples (columns 1–20). Figure 9a shows a

2-way clustered heatmap of ω K1=k2ð Þ
mRNA and here we see a group of genes in ω K1=k2ð Þ

mRNA that

are preferentially down-regulated on a set of 15 tumors relative to a complementary

subset of fifteen (15) HCCs and twenty (20) normal samples. Let Γ(−) denote the set of

column indices of HmRNA that correspond to the samples where ω K1=k2ð Þ
mRNA is down-

regulated and Γ(+) column indices for samples where ω K1=k2ð Þ
mRNA is up-regulated. In Fig. 9b

we see that the dominant eigen-signal of the 2-way, clustered heatmap in Fig. 9a clearly

discriminates between the samples in Γ(−) and Γ(+) based on a threshold set at zero. The

ability of ω K1=k2ð Þ
mRNA to discriminate between the samples in Γ(−) and Γ(+) suggests two dis-

tinct expression phenotypes for HCC represented by the seven (7) HCC in Γ(−) and fif-

teen (15) HCC in Γ(+). Moreover, the co-clustering of 7 HCC samples in Γ(−) along with

6 ICC suggests that these HCC samples represent a cholangio-like HCC subtype (CL-

Fig. 8 Clustered heatmap of the K1/k2 signature identified by JAMMIT in 50 liver tissue samples. The heatmap for

the K1/k2 signature, ω
K1=k2ð Þ
mRNA , exhibits very uniform expression on the normals (columsn 1–20) and very high

variability on the tumor samples. On the tumor samples, we note significant down-regulation of ω K1=k2ð Þ
mRNA

expression patterns on a subset of seven (7) HCC, six (6) ICC and 2 sarcomas. The remaining 15 HCC

had ω K1=k2ð Þ
mRNA expression profiles very similar to the 20 normal samples
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HCC), which may share clinical and biological attributes of this more aggressive sub-

type of liver cancer [44, 45].

Table 3 lists the top canonical pathways and upstream regulators of ω K1=k2ð Þ
mRNA ac-

cording to IPA. The top upstream regulators included the nuclear receptors

HNF4A, HNF1A, and FXR (NR1H4) where HNF4A and HNF1A were predicted to

be inactivated with high statistical significance. Moreover, FXR/LXR and LXR/RXR

Activation were the top canonical pathways and most of the genes in both path-

ways were down-regulated suggesting inactivation of these pathways upstream of

ω K1=k2ð Þ
mRNA . The dominate downstream effects of ω K1=k2ð Þ

mRNA per IPA included biological

functions related to the dysregulation of lipid and bile acid metabolism as well as

disease functions related to the initiation and progression of HCC and ICC. For

example, the inactivation of HNF4A as a significant upstream regulator of ω K1=k2ð Þ
mRNA

is consistent with published reports that HNF4A down-regulation suppresses hep-

atocyte differentiation and commitment to the biliary lineage in ICC and CL-HCC

[44–47]. Moreover, loss of HNF1A function in hepatocytes leads to the activation

of pathways involved in tumorigenesis [48]. Finally, HNF4A and FXR exhibit re-

duced expression in human HCC and ICC, and that mice lacking FXR expression

spontaneously developed HCC [49–51].

Fig. 9 Cluster analysis by the K1/k2 signature reveals a novel subtype of HCC metabolically similar to ICC. a 2-way
hierarchically clustered heatmap of K1/k2 signature in the 50-sample discovery data set. This analysis identified two

distinct expression phenotypes Γ(−) and Γ(+) where Γ(−) included samples where ωK1=k2
mRNA was down-regulated on the

samples in Γ(−) relative to the remaining samples in Γ(+). The Γ(−) class contained all 6 ICC samples plus 7 HCC and 2
sarcomas while Γ(+) contained all 20 normal samples along with 15 HCC. b Plot of the dominant eigen-signal of

the matrix for the ωK1=k2
mRNA signature clearly separates the samples in Γ(−) and Γ(+) based on a threshold set at zero
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We note the ω K1=k2ð Þ
mRNA signature included 46 membrane transport genes from the ATP-

Binding Cassette (ABC) and Solute Carrier (SLC) super-families, almost all of which

were significantly down-regulated in the tumor samples of Γ(−) relative to the samples

in Γ(+). Recall the dominant eigen-signal of ω K1=k2ð Þ
mRNA D1ð Þ was found to be significantly

correlated with the K1/k2 PET parameter (r ¼ 0:413; p ¼ 0:00293Þ . The K1/k2 param-

eter in-fluorocholine PET images reflects the blood-tissue equilibrium of choline, a nu-

trient important for phospholipid and bile homeostasis, as well as lipid transform.

Therefore, it is not surprising that the ω K1=k2ð Þ
mRNA signature contained a significant number

of ABC and SLC membrane transport genes, since these genes regulate the influx and

efflux of bile and lipids across the membranes of hepatocytes and cholangiocytes and

are tightly regulated by nuclear receptors HNF4A, HNF1A and FXR [52]. The above

suggests the inactivation of HNF4A, HNF1A and FXR upstream of ω K1=k2ð Þ
mRNA suppresses

the uptake and efflux of bile and lipids downstream of ω K1=k2ð Þ
mRNA by down-regulating the

expression of specific ABC and SLC genes of ω K1=k2ð Þ
mRNA . In addition to the wide-spread

disruption of bile acid and lipid homeostasis, the down-regulation of membrane trans-

porters in ω K1=k2ð Þ
mRNA directly impacts liver carcinogenesis and tumor progression. For

example: i) SLC22A1 is associated with progression and survival in human ICC [53]; ii)

knockout mice lacking ABCB4 suffer from the loss of biliary phospholipid secretion

and spontaneously develop HCC [50]; iii) transporter genes ABCB1, ABCC6, ABCC9,

ABCG2 are down-regulated in prostate cancer [54]; iv) ABCB11/BSEP (Bile Salt Export

Pump) and FXR expression is reduced in HCC [55]; and v) SLC22A1 is epigenetically

silenced in human HCC [56].

Figure 10 shows the expression profiles of the ABCB11 gene (i.e., Bile Salt Export

Pump or BSEP), in two different groupings of the samples: i) ICCvsHCC compares 6

ICC (columns 1–6) and 22 HCC (columns 7–28); and ii) NRMvsTUMOR compares 20

Normals (columns 1–20) and 30 Tumors (columns 21–50). The top panel of Fig. 10

Table 3 IPA analysis identifies top canonical pathways and upstream regulators of the ωK1=k2
mRNA

signature for liver cancer

Top Canonical Pathways

Pathway P-Value Overlap

FXR/RXR Activation 3.03E-60 48.8 % (62/127)

LXR/RXR Activation 2.36E-37 37.2 % (45/121)

LPS/IL1 Mediated Inhibition of RXR Function 5.89E-25 20.5 (45/219)

Top Upstream Regulators

Upstream Regulator P-Value of Overlap Predicted Activation

HNF1A 2.02E-78 Inhibited

PPARA 4.40E-46

HNF4A 4.20E-44 Inhibited

FXR 1.95E-38

GW4064 1.85E-34 Inhibited

The ωK1=k2
mRNA signature was highly enriched for genes in the FXR/RXR Activation pathway according to IPA. This pathway

regulates lipid and bile acid metabolism and has been associated with the initiation and progression of liver cancer. The
top upstream regulators of ωK1=k2

mRNA are the nuclear receptors HNF1A, HNF4A and FXR that are known regulators of
membrane transport function and have also been associated with liver cancer
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shows that the ABCB11 gene is down-regulated in the ICC samples (red squares) and

CL-HCC samples (green triangles) relative to the HCC samples (blue circles) in the

ICCvsHCC data set based on a horizontal threshold set at zero. The bottom panel of

Fig. 10 shows that ABCB11 is uniformly up-regulated on the 20 normals and highly

variable on the tumors with preferential down-regulated on the ICC (red circles), CL-

HCC (green triangles) and sarcoma samples in the NRMvsTUMOR data set. The

ABCB11 gene codes for a protein that facilitates the efflux of bile acids out of the liver

and defects in the ABCB11 gene result in progressive familial intrahepatic cholestasis,

which is a progressive liver disease that often starts early in life and rapidly progresses

to end-stage liver disease with an increased risk for HCC. The above suggests that ICC

and CL-HCC subtypes can be characterized in part by the suppression of bile acid ef-

flux that is mediated by the down-regulation of the ABCB11 transporter gene.

Figure 11 shows the expression profiles of nuclear receptors FXR and HNF4A and

the SLC transporter genes SLC2A1/GLUT1 and SLC6A14 in the ICCvsHCC and

NRMvsTUMOR experiments. Panels A and B of Fig. 11 confirm that both FXR and

HNF4A are preferentially down-regulated in ICCs relative to the HCC, uniformly up-

regulated on the normals relative to liver tumors, and highly variable on the tumors

with preferential down-regulation on the tumors in Γ(−). Panel C of Fig. 11 shows that

unlike the nuclear receptors FXR and HNF4A, the SLC2A1/GLUT1 transporter is up-

Fig. 10 The ABCB11 gene discriminates between the Γ(−) and Γ(+) expression phenotypes. a ABCB11 expression
over 6 ICC (columns 1–6) and 22 HCC (columns 7–28). b ABCB11 expession over 20 normals (columns 1–20)
and 30 tumors (columns 21–50)
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regulated in ICC relative to HCC, uniformly down-regulated on normals relative to tu-

mors, and highly variable on tumors but with preferential up-regulation on the tumors

in Γ(−). In Fig. 11d, SLC6A14 shows strikingly high and specific up-regulation on all 6

ICC and 5 of 7 CL-HCC samples relative to the remaining 15 HCC samples in the

Fig. 11 Expression profiles of selected nuclear receptors and transporter genes associated with the K1=k2 liver
signature. Shown are normalized expression profiles of selected genes associated with the K1=k2 signature in two
experimental designs denoted by ICCvsHCC and NRMvsTUMOR. Each lettered panel contains top and bottom
sub-panels showing the profile of a gene in the ICCvsHCC and NRMvsTUMOR designs, respectively. In the top
panels, columns 1–6 represent ICC samples and columns 7–28 HCC samples, while in bottom sub-panels, columns
1–20 represent normal samples and columns 21–50 represent liver tumors (6 ICC, 2 sarcomas and 22 HCC). Red
squares represent ICC samples, green triangles represent CL-HCC samples, and blue circles represent normal and
HCC samples. a Top panel shows FXR is down-regulated on ICC (cols 1–6) relative to HCC while the bottom panel
shows that FXR is uniformly up-regulated on the normals and preferentially down-regulated on a subset of tumors
that includes 6 ICC and 2 of 7 CL-HCC. b HNF4A shows expression patterns similar to FXR over the two groupings
of the samples, i.e., preferential down-regulation on the ICC and CL-HCC relative to the normals and HCCs. c
SLC2A1/GLUT1 is a transporter that is negatively correlated with the K1=k2 PET parameter and preferentially
up-regulated on the ICC and CL-HCC samples relative to the normal and HCC samples. d SLC6A14 is strikingly
up-regulated on all 6 ICC samples and less so on 5 of 7 CL-HCC samples relative to the normal and HCC samples
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ICCvsHCC experimental. Moreover, we see that SLC6A14 is uniformly down-regulated

on the normals compared to the tumors in NRMvsTUMOR with significant up-

regulation concentrated on the ICC and CL-HCC samples. SLC6A14 is reported to be

highly activated in cancers of the colon, cervix, breast, and pancreas, and the blockade

of SLC6A14 has been suggested as a treatment for many solid tumors [57, 58]. The

expression profiles in Fig. 11d supports the possibility that SLC6A14 may be a thera-

peutic target ICC and CL-HCC.

The correlation between ω K1=k2ð Þ
mRNA and the K1/k2 PET parameter suggests the ex-

pression phenotypes represented by Γ(−) and Γ(+) can be distinguished by the K1/k2
parameter [42, 59, 60]. To test this hypothesis, we encoded the information content

of the K1/k2 parameter vector in a Generalized Regression Neural Network (GRNN)

implemented in MATLAB (The MathWorks Inc., Natick, MA) after denoising by

the Daubechies mother wavelet of order 3 over 5 scales [61–63]. The GRNN model

was trained using a ‘spread” parameter set at 0.23235 that defines the level of

smoothing of the GRNN output. Training of the GRNN was supervised by a binary

target vector, T ∈ {0, 1}50, where the samples in Γ(+) and Γ(−) were labeled with a “0”

and “1”, respectively. Figure 12a visualizes the output of a GRNN trained on the K1/

k2 parameter for the 50 samples included in this study. Samples of the expression

phenotype Γ(−) are highlighted by red squares (ICC), green triangles (CL-HCC) and

black asterisks (sarcoma) while the samples in Γ(+) (adjacent-normal and HCC) are

highlighted as blue circles. The horizontal threshold (magenta line) was used to

classify each of the 50 samples by assigning a sample to the Γ(−) phenotype if its

Fig. 12 Discriminating between two expression phenotypes based on the PET kinetic parameter K1=k2. Points
in scatter plots represent output of Generalized Regression Neural Networks (GRNNs) trained to discriminate

between two expression phenotypes denoted by Γ �ð Þ and Γ þð Þ identified by the ω K1=k2ð Þ
mRNA expression signature.

Expression phenotype Γ �ð Þ contains 7 HCC, 6 ICC and 2 sarcomas while phenotype Γ þð Þ contains 20 normals
and 25 HCC. In each panel, columns 1–20 represent normals and columns 21–50 represent liver tumors (15
HCC, 6 ICC, 2 sarcomas, 7 CL-HCC). Horizontal line (magenta) represents a threshold τ on the GRNN output

where samples with GRNN values greater than τ are assigned to Γ �ð Þ , otherwise the sample is assigned to Γ þð Þ .
a GRNN output based on K1=k2 parameter vector aligned with sample grouping described above. Note that

all members of Γ �ð Þ and all but one of the normal samples are correctly classified with some confusion on the
HCC samples with a correct classification rate of 87 %. b GRNN output on a random permutation of the K1=k2
parameter vector showing poor overall classification performance. Only 1 out of 1000 permutations of the K1=

k2 parameter vector had a correct classification rate greater than 86 %, which resulted in an empirical p-value
of 0.001 for the observed classification pattern shown in panel A
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GRNN value was greater than the threshold and to Γ(+) otherwise. Here, we see the

GRNN trained on the denoised K1/k2 vector correctly classified all the samples in

Γ(−) and 71 % of the samples in Γ(+) for an average correct classification rate of 86 %,

which is significantly greater than chance. We note that the GRNN output vector

was significantly correlated with the target values in T (r = 0.61267 p = 1.987E − 06).

To assess the robustness of this result, the K1/k2 parameter vector was randomly

permuted 1000 times and a GRNN was trained on each permutation using the tar-

get vector T and spread parameter equal to 0.23235. Figure 12b shows that it is difficult

to separate Γ(−) and Γ(+) using any threshold on the output of a GRNN trained on a ran-

dom permutation of the K1/k2 parameter vector, which is reflected in the low correlation

of the GRNN output with the target vector T r ¼ 0:27615; p ¼ 0:05223ð Þ . Out of 1000

permutations only one had correlation greater than r = 0.61, which resulted in an empir-

ical p-value of pK1=k2 ¼ 1=1000 ¼ 0:001. Hence, the observed separation of Γ(−) and Γ(+)

shown in Fig. 12a was probably not a random event.

These preliminary results suggest that the non-invasive monitoring of specific bio-

logical processes over time in liver tumors using PET imaging is possible. Note the K1/

k2 kinetic parameter is just one of many quantitative features that can be extracted

from PET images for the supervised analysis of genomic data sets. Relating predictive

signatures extracted from molecular images to global patterns of genomic, transcrip-

tomic, epigenomic and metabolomic variation using algorithms such as JAMMIT can

be referred to as “imaging genomics” [42, 64]. The central hypothesis of imaging gen-

omics is that image features that capture variation over space and time reflect under-

lying genetic programs of biological and clinical relevance.

Discussion and conclusions
We have demonstrated that if the support of a dominant SOI of a big MMDS is sup-

ported by a small percentage of all measured variables, then ℓ1 regularization pro-

vides an efficient and powerful way to identify this sparse signature. We encoded

this approach in the Joint Analysis of Many Matrices by ITeration (JAMMIT) algo-

rithm that estimates a sparse signal model using an implementation of the LASSO

that regularizes the best rank-1 matrix approximation of the super-matrix that verti-

cally “stacks” the individual data matrices of a MMDS based on the ℓ1 norm. By

unstacking the super-signature derived by JAMMIT we obtain type-specific signa-

tures that characterize clinically important attributes of the samples in terms of var-

iables of one or more data types. JAMMIT compared favorably with other joint

analysis algorithms in the detection of multiple SOI embedded in simulated MMDS

over a wide range of SNR scenarios. Application of JAMMIT to ovarian cancer from

TCGA resulted in novel, low-dimensional signatures that linked overall survival to

host immune response and macrophage polarization in the tumor microenviron-

ment. We also demonstrated that multi-modal signatures composed of mRNA and

methylation variables can result in predictive models of overall survival that outper-

form models based on uni-modal signatures composed of only mRNA or DNA

methylation variables alone. Finally, JAMMIT analysis of whole-genome mRNA and

PET imaging data for liver cancer revealed a novel sub-type of HCC with an expres-

sion signature similar to that of ICC, a tumor sub-type with a much poorer clinical
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outcome. Pathway analysis indicated that this expression signature was associated

with a pervasive down-regulation of genes and pathways that regulated membrane

transport of lipids, suggesting that any difference in clinical outcome between

these two tumor subtypes may be due in part to membrane transport dysregula-

tion. This particular application of JAMMIT to liver cancer also demonstrates

how the analysis of a single big data matrix can be supervised by an arbitrary

univariate function using ℓ1 regularization.

In developing the JAMMIT algorithm we encountered a number of technical issues

related to the joint analysis of multiple data types that will require further study. For

example, we have shown that ℓ1 regularization of the super-matrix that vertically stacks

multiple, big data matrices of a MMDS for ovarian cancer resulted in low-dimensional,

multi-modal signatures that were biologically coherent and predictive of clinical out-

comes. For this analysis, each data matrix was appropriately pre-processed as a function

of data type, and the resulting super-matrix was scaled by its Frobenius norm. The sen-

sitivity of JAMMIT-derived signatures to this front-end pre-processing procedure is an

open question that will be answered more definitively in future studies. Another issue

pertains to systematic variation in the data that we assume is unique to a given data

type. Since JAMMIT models a dominant source of common variation that is shared

across multiple data types, we expect the FDR profiles of each data type to rapidly

decrease in unison as a function of increasing ℓ1 penalty for such a signal.. In this case,

it is unlikely that the resulting signal model represents systematic variation that is by

definition unique to a single data type. Alternatively, if only a single data type shows a

rapidly decreasing FDR profile, then it is likely that JAMMIT is modeling a source of

systematic variation that is unique to that data type. Subsequent downstream process-

ing of the resulting type-specific signatures using pathway and ontological analysis

should be able to resolve some of the ambiguity regarding the biological and/or clinical

relevance of such signatures. This feature of JAMMIT to discriminate between system-

atic and biologically relevant sources of variation based on FDR decay will be character-

ized more fully in future investigations. Finally, the use of FDR to select an appropriate

ℓ1 penalty that balances statistical significance and signature size provides researchers

with considerable flexibility in model selection, but it comes with a high computational

cost associated with permutation testing. Future studies should consider alternative

methods of selecting an “optimal” ℓ1 penalty that takes into account user preferences

for model parsimony, sensitivity, and specificity without the need for resampling.

This study illustrates the importance of taking a sequential approach to data re-

duction that incorporates biological knowledge in a computational model at the ap-

propriate time to enable robust predictions in larger populations. For example, the

use of prior biological knowledge encoded in IPA to “decompose” a given JAMMIT

signature into smaller sub-signatures based on significant upstream regulators was

shown to result in low-dimensional signatures of clinical significance that facilitated

downstream biological interpretation and validation. In general, the reduction of

big, multi-modal data sets to low-dimensional signatures that accurately model the

clinical trajectory of cancer and other complex diseases can be realized by incorp-

orating biological knowledge at appropriate points in the modeling process where

algorithms such as JAMMIT represent just the first step of the data reduction

process.
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Additional file 1: Estimating FDR profiles on a grid of ℓ1 penalties. (DOCX 59 kb)

Additional file 2: Generation of simulated MMDS. (DOCX 86 kb)

Additional file 3: Eigen-survival modeling of JAMMIT signatures. (DOCX 42 kb)

Additional file 4: FDR profile of a JAMMIT analysis of multi-modal data for ovarian cancer from TCGA. This table summa-
rizes the relationship between ℓ1 penalties and FDR that is estimated based on 100 permutations of the super-matrix of a
MMDS for ovarian cancer that integrates whole-genome mRNA, miRNA and DNA methylation data obtained from 291
patients with stage3 disease. Note the FDR profiles for each data type (columns 4, 6, and 8) are decreasing towards smaller
values indicating that all 3 data types contribute to some degree to a “sparse” linear model of the SOI, with mRNA contrib-
uting the most in terms of FDR. In particular, row 19 (in red) is highlighted since it corresponds to a FDR for mRNA of
0.0034619 that is a local minimum of column 4. This FDR value is associated with an ℓ1 penalty of 0.002875 that results in
a mRNA signature composed of 643 genes (FDR=0.0034619), a miRNA signature of 368 miRNAs (FDR=0.19912), a methyla-
tion signature of 450 methylation loci (FDR=0.03038), and a multi-modal signature composed of a 1461 variables
(FDR=0.067647). (DOCX 20 kb)

Additional file 5: FDR profile for analysis of whole-genome gene expression data supervised by the K1/k2 PET
parameter. Note the K1/k2 PET parameter (column 5) is selected for inclusion in the sparse linear model of the SOI
for most ℓ1 penalties with FDR values of zero. Moreover, the FDR profile for genes (column 4) is rapidly decreasing
indicating a strong signature for gene expression. These results taken together suggest that the K1/k2 parameter is
associated with gene expression via the sparse linear model for the SOI. In particular, row 12 (highlighted in red)
corresponds to a FDR for mRNA of 0.00054949 that is a local minimum of column 4. This FDR value is associated
with a ℓ1 penalty of 0.0089429 that results in a mRNA signature composed of 652 genes. (DOCX 19 kb)

Additional file 6: FDR profile for analysis of whole-genome expression data supervised by the K1 PET parameter.
This FDR profile indicates a lack of correlation between global gene expression and the K1 PET kinetic parameter.
Note that the K1 PET parameter (column 5) is NOT selected for inclusion in the model of the SOI for all but the first
ℓ1 penalty value (see row 1) with FDR values of 1.0. This result is in sharp contrast to the FDR profile for gene
expression (column 4) where the FDR values rapidly decrease to small values. This result suggests that although
there is a strong signal in the mRNA data matrix that contributes to the common SOI, this signal is not correlated
with the K1 PET parameter. (DOCX 19 kb)
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