
REVIEW Open Access

Visual programming for next-generation
sequencing data analytics
Franco Milicchio1, Rebecca Rose2, Jiang Bian3, Jae Min4 and Mattia Prosperi4*

* Correspondence: m.prosperi@ufl.edu
4Department of Epidemiology,
College of Public Health and Health
Professions & College of Medicine,
University of Florida, 2004 Mowry
Road, Gainesville 32610-0231, FL,
USA
Full list of author information is
available at the end of the article

Abstract

Background: High-throughput or next-generation sequencing (NGS) technologies
have become an established and affordable experimental framework in biological
and medical sciences for all basic and translational research. Processing and
analyzing NGS data is challenging. NGS data are big, heterogeneous, sparse, and
error prone. Although a plethora of tools for NGS data analysis has emerged in the
past decade, (i) software development is still lagging behind data generation
capabilities, and (ii) there is a ‘cultural’ gap between the end user and the developer.

Text: Generic software template libraries specifically developed for NGS can help in
dealing with the former problem, whilst coupling template libraries with visual
programming may help with the latter. Here we scrutinize the state-of-the-art
low-level software libraries implemented specifically for NGS and graphical tools for
NGS analytics. An ideal developing environment for NGS should be modular (with a
native library interface), scalable in computational methods (i.e. serial, multithread,
distributed), transparent (platform-independent), interoperable (with external
software interface), and usable (via an intuitive graphical user interface). These
characteristics should facilitate both the run of standardized NGS pipelines and the
development of new workflows based on technological advancements or users’
needs. We discuss in detail the potential of a computational framework blending
generic template programming and visual programming that addresses all of the
current limitations.

Conclusion: In the long term, a proper, well-developed (although not necessarily
unique) software framework will bridge the current gap between data generation
and hypothesis testing. This will eventually facilitate the development of novel
diagnostic tools embedded in routine healthcare.

Keywords: Next-generation sequencing, High-throughput sequencing, Big data,
Template library, Generic programming, Visual programming, Graphical user interface,
Software suite

Main text
Background

High-throughput or next-generation sequencing (NGS) technologies have become an

established and affordable experimental framework for basic and translational research

in biomedical sciences and clinical diagnostics [1–3]. The applications of NGS are

almost endless, spanning many ‘–omics’ fields, such as genomics, transcriptomics, and

metabolomics [3–11]. Nowadays, it is possible to sequence any microbial organism or

© 2016 Milicchio et al. Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International
License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium,
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and
indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/
publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Milicchio et al. BioData Mining (2016) 9:16
DOI 10.1186/s13040-016-0095-3

http://crossmark.crossref.org/dialog/?doi=10.1186/s13040-016-0095-3&domain=pdf
mailto:m.prosperi@ufl.edu
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/

metagenomic sample within hours and to obtain human genomes in weeks. By sequen-

cing the entire genome in targeted patients, it is possible to identify genes and regula-

tory elements related to pathophysiological conditions. Genome-wide association

studies and analysis of gene expression, usually made via well-established microarray

techniques, can now be done via NGS, e.g. RNA-Seq[uencing]. NGS allows for full gen-

ome characterization of other organisms besides the human genome, including known

pathogens, and yet-to-be-identified bacterial, viral, or fungal species that may pose a

public health threat [12]. Another growing application of NGS is microbial community

analysis. The diverse host-associated microbiota has received intense research interests

for its potential associations with human health outcomes [13]. With few modifications

in sample preparation protocols, a single NGS machine can offer the scientist an abun-

dance of data for exploring multi-domain research questions.

Several NGS platforms and sequencing technologies are available [14]. Technology

providers include Illumina Inc. [15], Thermo Fisher Scientific [16], Roche [17], and

Pacific Biosciences [18]. NGS services are available at a comparable price to estab-

lished sequencing methods such as Sanger, although with considerably greater data

output [19–21].

Whereas the traditional Sanger [22] approach produces contiguous nucleotide se-

quence reads between 400 and 700 bases with a throughput of 50-30,000 kilobases per

hour, NGS reaches a throughput of 10-600 gigabases per hour, producing reads up to

700 nucleotide bases long [9], and Pacific Biosciences broke the 10,000+ bases length

record. The terabyte-size of nucleotide sequence data per run is becoming a reality,

which will further lower per-sample sequencing cost [23, 24]. The fourth-generation of

Oxford’s Nanopore-based sequencers have the potential to reduce the cost for sequen-

cing an entire human genome from the fairly recent $1,000 target [25] to an astounding

$100 [26, 27]. The decreasing trend of the cost-per-base of DNA sequence since 2008

even exceeded Moore’s law [28], i.e. the exponential growth of computing hardware

capabilities, where the number of transistors in an integrated circuit doubles approxi-

mately every two years.

Ever since the first NGS machine was commercialized in 2004 by 454, the develop-

ment of robust, intuitive, and easy to use analytic tools has been behind data generation

capabilities. This state was defined with the evocative term “analysis paralysis” in 2010

[29]. A landmark paper in 2012 by Vyverman et al. highlighted the limitations and

needs of bioinformatics tools for a variety of complex string problems that are at the

base of most NGS analytics [30]. Five years later, analysis is no longer paralyzed. A

plethora of NGS data analysis software has emerged, with considerable redundancy.

Nevertheless, software development must adapt to handle fast-pace evolving technol-

ogy, e.g. further data inflation resulting from the Nanopore platform [31–34].

Most of the current NGS software requires dedicated bioinformaticians with access

to comprehensive computational infrastructure. Just a few years ago, there was a bottle-

neck between data generation and inference (analyzing and making sense of the data),

but nowadays, access to these bioinformatics resources is more common and afford-

able. The new bottleneck is the evolution of software in accordance with technological

advances and users’ needs.

Comprehensive software suites for NGS analytics must be supported by an appropri-

ate development environment. The lack of an organized programming base slows down

Milicchio et al. BioData Mining (2016) 9:16 Page 2 of 17

the development of innovative applications that can be handled directly by the investi-

gators generating the data. Biological scientists carrying out experiments at times

undergo delays and difficulties in analyzing NGS data because tools customized to their

needs and abilities are not readily available. Current software for NGS analytics requires

medium-to-advanced level of computational proficiency. One reason is the compulsory

use of high-performance computing infrastructure for analyzing most NGS data sets.

Such computational arrangements should not be necessary when sequencing individual

fungal, microbial or viral pathogens or when performing targeted phylogenetic studies

(e.g. 16S ribosomal RNA); a desktop computer should be sufficient for analyzing bacter-

ial data generated by platforms such as Illumina’s MiSeq. When users need to move

onto a high-performance computing infrastructure for projects involving large numbers

of human genome sequences, they may benefit from the availability of software they

are already familiar with (i.e. the one running on their desktop machine), rather than

being required to learn an entirely new set of programs. An example in statistical ana-

lytics is the SAS software system (SAS Institute Inc.), which does not require the users

to change the programming syntax when migrating across different components or in-

stallations (including desktop, server, and distributed editions).

At present, software engineers who develop new algorithms and analytical tools for

NGS face a lack of dedicated libraries and interoperable software, and they have to

write new tools which in turn cannot be interoperable. From a developer’s perspective,

many existing programs could be rewritten to be more efficient or to be parallelized

homogeneously, as in hierarchical build of programs, for easy integration across various

platforms. With a common software layer that abstracts interactions between data and

algorithms, integrating procedures that exploit multithreading or distributed computing

may be achieved without in-depth modifications of the algorithms themselves. In

addition, the adoption of generic programming template libraries can homogenize pro-

grammers’ work and permit a more community-engaged software development.

Template libraries and generic programming

In spite of the glut of NGS software [35], there is a lack of low-level programming ap-

proaches; in other words, the development of specific data structures and functions

(e.g. a de Bruijn graph constructor or a Burrows-Wheeler transformation function) for

languages like C++ or Java are in short supply. Software packages and libraries specific-

ally designed for NGS such as BAMTools [36], htslib (SAMtools/bcftools) [37], NGS++

[38], Bioclojure [39], or libStatGen [40] are focused on parsing and file format

standardization, with limited provision of data structures and algorithms useful for

NGS analytics. Although a number of libraries and toolsets for generic sequence ana-

lysis is available [41–43], their incorporation into NGS generic programming is prob-

lematic given the tremendous shift in data size. This is also true for programming

language extensions such as BioPerl, BioRuby, BioJava, BioPython [44–47], born under

the unifying effort of the Open Bioinformatics Foundation [48] and for large repositor-

ies like Bioconductor [49, 50]. Note that we differentiate between true programming

libraries, toolkits, and software tools [51]. A library is a collection of data structures

and functions/methods for a specific programming language (usually written in the

same language, but not necessarily if the language is at a high-level, like R), which can

Milicchio et al. BioData Mining (2016) 9:16 Page 3 of 17

be used seamlessly when writing new code in that language. A toolkit deviates from the

rigorous concept of library as it can also include a set of executable programs which

can be called and combined internally or externally (like EMBOSS). Lastly, a software

tool is a standalone program that has a fixed input/output routine and whose internal

functions or data structures cannot be used elsewhere. For instance, the popular BWA

program for mapping short reads to a reference is a standalone program, even if it fea-

tures internal data structures like the Burrows-Wheeler transform, used by other pro-

grams, like Bowtie. Table 1 gives a description of the most popular libraries and

toolsets for sequence analysis and NGS data processing. One example of a sequence

analysis library that evolved successfully to handle NGS data is SeqAn [52, 53]. This

was possible because according to SeqAn website: “SeqAn applies a unique generic de-

sign that guarantees high performance, generality, extensibility, and integration with

other libraries.” The SeqAn library is written in C++ and licensed as an open

source. It also employs the Hierarchical Data Format 5, which makes possible the

management of large and complex data collections [54] in serial, multithreaded,

and distributed environments. The number of tools for NGS that have been

released using SeqAn is remarkable and proves how such open programming

approach is advantageous [55–57]. Bowtie, Lambda and Fiona are written in

SeqAn, the latter of which is one of the fastest local aligners for NGS data and

error correction tool, and it may become an alternative to BLAST. Another toolset

similar to SeqAn is GenomeTools [58], which is efficient but provides limited functionality

and genericity. To our knowledge, SeqAn is the only available NGS-specific library that

embraces the generic programming philosophy.

What is template generic programming?

A generic programming framework provides traits classes [59], i.e. an abstract repre-

sentation of data types and algorithms [60]. As a real-life example, take the LEGO® toy

construction kits. A child (end user) wants a LEGO® model of a brick that resists

trampling. A company (developer) may be contracted to produce new stomp-resistant

brick types (data structures/functions) that respect the general specification (traits

class) of LEGO® bricks (e.g. hole spacing and size), thus ensuring that, before reaching

the end-user, the new brick (structure) will work with any other LEGO® toy piece. In

essence, a traits class may be seen as a prescription, a specification for data structures

or functions: it enforces clients to respect a list of prerequisites. More technically, a

traits class is the gateway for calling a function on a generic and a priori unknown data

structure, employed at compile time (that is parametric polymorphism). If the given

data structure provides types and methods definitions required by the traits, then any

algorithm employing such a structure may be applied to any data structure that re-

spects the requirements. This allows developers to write algorithms that can be applied

at no runtime cost to any data structure, without knowing a priori which data structure

will be employed or the types involved in the process.

Template generic programming enables provision of seamless infrastructure for com-

putational tasks and replacement of serial algorithms, or data types with multi-

threaded/distributed ones, without significant changes to the program structure and

without additional runtime overhead, provided the adherence to a traits class. For

Milicchio et al. BioData Mining (2016) 9:16 Page 4 of 17

Table 1 Summary of programming libraries/toolkits for analysis of (next-generation) sequencing
data

Library Name Release
Date

Programming
Language

License Website Features

EMBOSS [43] 2000 C
C++ BTL
others

GNU GPL http://emboss.sourceforge.
net/

Sequence alignment; rapid
database search; protein
motif identification;
nucleotide sequence
pattern analysis; codon
usage analysis for small
genomes; rapid
identification of sequence
patterns in large scale
sequence sets; presentation
tools for publication.

BTL [41] 2001 C++ GNU GPL http://www.cryst.bbk.ac.
uk/~classlib/

Data structures (e.g.
graphs); nucleotide string
methods (e.g. Fourier
transform, Needleman-
Wunsch alignment).

Bioperl [47] 2002 Perl Artistic
License
GNU GPL

http://bioperl.org/ Access sequence data from
local/remote data bases;
manage data base formats;
data base search;
manipulating sequences/
sequence alignments;
gene annotations.

Bioconductor
[50]

2003 R
(C/C++)

Artistic
BSD
GNU GPL

https://
www.bioconductor.org/

Repository of multiple
libraries for analysis and
comprehension of genomic
and –omics data, including
NGS.

BioPHP 2003 PHP GNU GPL http://biophp.org/ DNA and protein sequence
analysis, sequence
alignment.

GenomeTools
[58]

2003 C Open BSD http://genometools.org/ Parsing, compression, k-mer,
suffix trees, annotation,
error correction and other
sequence analytics
(FASTA, FASTQ)

Pizza&Chili
[94]

2005 C/C++ GNU
Lesser
GPL

http://pizzachili.di.unipi.it/ Compressed indices, text
collections

Bio++[42] 2006 C++ CeCILL
GPL

http://kimura.univ-
montp2.fr/BioPP

Sequence analysis,
phylogenetics, molecular
evolution; population
genetics.

Biojava [46] 2008 Java GNU
Lesser
GPL

www.biojava.org/ Manipulate biological
sequences; file parse; DAS
client/server support; access
to BioSQL/Ensembl data
bases; tools for making
sequence analysis GUIs;
statistical routines; dynamic
programming toolkit.

SeqAn [52] 2008 C++ BSD 3-
clause

http://www.seqan.de/ Extensive set of algorithms
and data structures for the
analysis of nucleotide
sequences, with emphasis
on NGS data; includes
index, compression, data
base search, support for
NGS-specific file formats
(fastq, SAM/BAM, VCF, BED).

Milicchio et al. BioData Mining (2016) 9:16 Page 5 of 17

http://emboss.sourceforge.net/
http://emboss.sourceforge.net/
http://www.cryst.bbk.ac.uk/~classlib/
http://www.cryst.bbk.ac.uk/~classlib/
http://bioperl.org/
https://www.bioconductor.org/
https://www.bioconductor.org/
http://biophp.org/
http://genometools.org/
http://pizzachili.di.unipi.it/
http://kimura.univ-montp2.fr/BioPP
http://kimura.univ-montp2.fr/BioPP
http://www.biojava.org/
http://www.seqan.de/

instance, when reading molecular sequence files and associated metadata (e.g. fastq files

with nucleotides and quality scores), the compiler generates an ad hoc class given a

chosen structure (e.g. a list or a suffix tree); no virtual functions and inheritance will be

involved, reducing the runtime overhead. One could replace a serial constructor with a

distributed one (e.g. reading sequence files in parallel), or change its associated

methods (e.g. a sequence corrector based on two different algorithms) without chan-

ging the program; since the software employs traits to access a generic data structure,

the compiler will ensure that the change will be a valid one. Hence, when a container

does not respect the requirements, the software will refuse to compile, allowing devel-

opers to assess the interoperability of data types and algorithms without any performance

degradation, and to write software libraries that may be applied to any traits-abiding data

structure. The advantage of a library on generic programming templates is straightfor-

ward: the library can be updated for handling new data types, increase in data size, and

technology changes in computing, like a new graphic processing unit chip or a computa-

tion accelerator (e.g. Intel® Xeon Phi).

General-purpose software suites and graphical user interfaces

Low-level libraries and command-line toolsets are appropriate for software developers

and programming-savvy users; they form the base to develop high-level ensemble

Table 1 Summary of programming libraries/toolkits for analysis of (next-generation) sequencing
data (Continued)

Biopython
[45]

2009 Python, C Biopython http://biopython.org/ Sequence input/output;
alignment input/output;
population genetics;
structural bioinformatics;
SQL interface.

htslib
SAMtools
BCFtools [37]

2009 C MIT Expat
Modified
BSD

http://www.htslib.org/ Read, write, edit, index,
view SAM/BAM/CRAM
formats; read, write BCF2/
VCF/gVCF files; call, filter,
summarize SNP/short
indels.

BioRuby [44] 2010 Ruby GNU GPL http://bioruby.open-bio.org/ DNA and protein sequence
analysis, sequence
alignment, biological
database parsing, ontology,
structural biology.

BAMTools [36] 2011 C++ MIT https://github.com/
pezmaster31/bamtools

Read, write, manipulate
BAM formats

libStatGen
[40]

2011 C++ GNU GPL https://github.com/statgen/
libStatGen

Handle SAM/BAM, fastq,
GLF, VCF, ASP.

NGS++ [38] 2013 C++ GNU
Lesser
GPL

https://github.com/NGS-lib/
NGSplusplus

Read, write, manipulate
multiple genomic file
formats and data
associated with BED type
files (epigenomics).

Bioclojure [39] 2014 Clojure GNU
Lesser
GPL

https://github.com/s312569/
clj-biosequence

Parse of Genbank, Uniprot
XML, fasta, fastq formats;
wrappers for BLAST, signalP,
TMHMM; index files for
random access, lazy
processing of sequences
from very large files.

Milicchio et al. BioData Mining (2016) 9:16 Page 6 of 17

http://biopython.org/
http://www.htslib.org/
http://bioruby.open-bio.org/
https://github.com/pezmaster31/bamtools
https://github.com/pezmaster31/bamtools
https://github.com/statgen/libStatGen
https://github.com/statgen/libStatGen
https://github.com/NGS-lib/NGSplusplus
https://github.com/NGS-lib/NGSplusplus
https://github.com/s312569/clj-biosequence
https://github.com/s312569/clj-biosequence

software suites that feature a graphical user interface (GUI) with menus and premade

workflows or analysis pipelines. Suites bring complex analytical procedures to the gen-

eral user. For instance, user-friendly statistical software with powerful GUI includes

Statistica (Dell Inc.), SAS Enterprise (SAS Institute Inc.), and SPSS (IBM Corporation).

This easily accessible interface is advantageous as it can facilitate the applied and trans-

lational aspects of NGS research for those without programming knowledge, but the

software must be carefully designed in order to prevent users from making errors due

to lack of specialized expertise. In addition to a GUI featuring single functions and pre-

made workflows, some high-level suites offer visual workflow builders. Visual builders

are different form GUIs because they permit combination (more or less flexibly) of

existing program functions into new data processing pipelines, which may not be avail-

able as pull-down menus or icons in a GUI.

Several high-level tools for NGS analytics are available (see Table 2 for a summary).

There are commercial products with closed source code, such as Illumina’s BaseSpace

[61], CLCBio [62], DNASTAR’s Lasergene [63], and Geneious [64]. Free and hybrid

commercial/free software include Galaxy [65, 66], Globus Genomics [67], PATRIC [68],

and UGENE [69, 70]. Most of the software suites can be installed locally or on a server.

Illumina’s BaseSpace provides an exclusively cloud-based environment hosted by

Amazon Inc., direct integration with sequencing instruments, and workflows as

mobile-touch apps.

Galaxy, a web-browser application, is one of the most popular, open source NGS

suites and effectively offers a unique developer’s platform, permitting the integration

and collation of different programs. Galaxy has a substantial support from the devel-

opers’ community; both researchers and federal agencies are investing in this promising

platform, which also features a visual workflow builder. However, Galaxy does not per-

mit development of new algorithms and standalone software by itself, and it must be

supported by a proper collection of low-level programs.

UGENE is another free and open source platform. The suite is multiplatform, i.e. it

runs on computers with any operating system, such as MS Windows or Mac OSX by

using the Qt C++ framework, incorporates multiple pipelines for NGS, and allows vis-

ual design of new ones with its built-in workflow builder, as in Galaxy (with similar

limitations).

Not all procedures implementable from the command-line can be represented in the

Galaxy’s workflow builder. For instance, workflows require a fixed set of inputs and

therefore looping on files within is not yet available (as of November 2015). ‘Enhanced’

Galaxy frameworks like Globus Genomics or SevenBridges can overcome such work-

flow limitations, but require a higher technical expertise [67]. UGENE’s builder has lim-

itations similar to Galaxy. New features in UGENE can be requested to the developers’

team, which also provides tech and other types of support for a price. UGENE is

equipped for parallel computation, but the capabilities to distribute jobs are limited by

the capabilities of programs embedded (also the case for Galaxy). Nonetheless, UGENE

developers’ team has steadily published new workflows for NGS, providing extensive

walkthroughs for the non-specialists: recently released pipelines include: “Variant

Calling with SAMtools,” “Tuxedo Pipeline for RNA-seq Data Analysis,” and “Cistrome

Pipeline for ChIP-seq Data Analysis,” all currently integrated into the Unipro UGENE

desktop toolkit [69].

Milicchio et al. BioData Mining (2016) 9:16 Page 7 of 17

Visual programming

We have highlighted the importance of creating a solid low-level base for NGS pro-

gramming and a high-level base to scale up analytics, especially with the usage of visual

tools.

In computer science, a visual programming (VP) language is a medium for

implementing computer programs that makes uses of graphical operators and elements

rather than textual ones. VP is not a new concept [71–74]; it has been envisioned in

several ways starting from the early 1960s and has been the object of philosophical

debates [75, 76]. VP is different from GUI. A GUI aids users executing programs via

visual menu items in contrast to command-line (i.e. terminal) text scripting. In general,

GUI menus are premade and users cannot create new programs or combine menu

functions within the GUI. Conversely, a VP language has the same power as a textual

Table 2 Summary of all-purpose software suites for analysis of next-generation sequencing data
offered with a graphical user interface option

Software
Name

License Free Platform Installation Workflow
Builder

Website

BaseSpace Proprietary No Web-browser
App

Cloud No https://
basespace.illumina.com

CLCBio Proprietary Trial Web-browser Server Yes http://www.clcbio.com/

DNASTAR
Lasergene

Proprietary Trial MS Windows
Mac OSX
UNIX/Linux

Localhost
Server

No http://www.dnastar.com/

Galaxy GNU GPL Yes Web-browser Localhost
Server
Cloud

Yes https://galaxyproject.
org/
https://usegalaxy.org/

Geneious Proprietary Trial MS Windows
Mac OSX
UNIX/Linux

Localhost
Server

No http://www.geneious.
com/

Globus
Genomics

Apache
+ third party

Yes/No
(depends
on
the
service)

Web-browser Cloud Yes https://www.globus.
org/genomics

Golden Helix Proprietary Trial MS Windows
Mac OSX
UNIX/Linux

Localhost No http://goldenhelix.com/

Partek Proprietary Trial MS Windows
Mac OSX
UNIX/Linux

Localhost No http://www.partek.com/

PATRIC GNU GPL Yes Web-browser Cloud No https://www.patricbrc.org

Sequencher Proprietary Trial MS Windows
Mac OSX

Localhost
Server

No https://www.genecodes.
com/

SevenBridges GNU GPL
(Rabix)
+ third party

Trial Web-browser Cloud Yes https://www.sbgenomics.
com/

SoftGenetics Proprietary Trial MS Windows
Mac OSX
(via Parallels)

Localhost
Server

No http://www.softgenetics.
com/

UGENE GNU GPL Yes MS Windows
Mac OSX
UNIX/Linux

Localhost
Server

Yes http://ugene.net/

Vector NTI Proprietary Trial MS Windows
Mac OSX

Localhost
Server

No http://www.thermofisher.
com/us/en/home/life-
science/cloning/vector-
nti-software.html

Milicchio et al. BioData Mining (2016) 9:16 Page 8 of 17

https://basespace.illumina.com
https://basespace.illumina.com
http://www.clcbio.com/
http://www.dnastar.com/
https://galaxyproject.org/
https://galaxyproject.org/
https://usegalaxy.org/
http://www.geneious.com/
http://www.geneious.com/
https://www.globus.org/genomics
https://www.globus.org/genomics
http://goldenhelix.com/
http://www.partek.com/
https://www.patricbrc.org/
https://www.genecodes.com/
https://www.genecodes.com/
https://www.sbgenomics.com/
https://www.sbgenomics.com/
http://www.softgenetics.com/
http://www.softgenetics.com/
http://ugene.net/
http://www.thermofisher.com/us/en/home/life-science/cloning/vector-nti-software.html
http://www.thermofisher.com/us/en/home/life-science/cloning/vector-nti-software.html
http://www.thermofisher.com/us/en/home/life-science/cloning/vector-nti-software.html
http://www.thermofisher.com/us/en/home/life-science/cloning/vector-nti-software.html

programming language or a library, if it features the same functional elements (e.g. data

structures and methods); therefore, new algorithms and programs can be designed and

compiled within a VP, and VP can even be used to implement GUIs. Visual approaches

to programming have been explored in diverse environments, including education,

multimedia, system simulation and automation, data warehousing, and business

intelligence, with probably the most successful example being the computer-aided de-

sign (CAD) software industry. Another extremely popular area for VP is video game de-

sign [77, 78]. Although in principle VP can be used to create algorithms starting from

the lowest hierarchy of programming language elements, in practice, VP is employed

for creating higher-level applications using libraries. This facilitates developers’ work

when a large amount of coding (and redundant coding) is required.

How can visual programming benefit NGS software development?

Currently, there are no ‘pure’ VP approaches being developed for NGS applications.

Galaxy or UGENE workflow builders can be considered rudimental VP environments,

but as discussed previously, they do not offer the same set of functions as the

command-line and have limited interoperability (i.e. they work only within their parent

environment and cannot build independent programs). However, there is potential for

improving the workflow builders using the VP approach.

Visual programming entities

The main elements of a VP language are: building blocks, block engines, block connec-

tors, and meta-blocks. Building blocks are the basic VP pieces, like LEGO®; they can

have different functions, like the different shapes of LEGO® blocks. Building blocks can

represent a file parser, a read trimmer, a mapping algorithm, a k-mer graph builder, a

SAM/BAM file converter, et cetera. They can be data structures, constructors,

methods. Technically, building blocks are filters modelled functionally, linking connec-

tors with input-output control, in accordance to the domain-driven design paradigm,

e.g. C# or Microsoft.NET [79, 80]. Block engines perform computational procedures

within a building block; for example, they read a fastq file or they map a read set to a

reference genome using a specific algorithm. In the generic template framework, the al-

gorithms can be transparently replaced (given that implementations respect devised

traits classes). Block connectors are relational mappings between data structures and al-

gorithms within functional visual blocks, i.e. the communication links among building

blocks. For instance, a read mapper requires both a reference sequence (which could be

indexed upon parsing) and a read set (which could be read as single- or paired-end). A

metagenomics classifier requires a genomic database and the read sets. Block connec-

tors encode these relations. Finally, meta-blocks are blocks made of multiple building

blocks and connectors, i.e. whole data analysis pipelines, replaced by a single building

block of a higher hierarchy (given a defined ontology for the blocks). If a user is not a

developer, there is no need for them to access the whole block workflow. They can use

the blocks at the highest level hierarchy which would correspond to a single icon/menu

in the GUI; for instance, a “metagenomics analysis pipeline” meta-block would ask for

a specific set of input files (fastq) and write a standardized output (fasta, KEGG, SEED).

The more a user is acquainted with NGS algorithms, the more they can get trained into

Milicchio et al. BioData Mining (2016) 9:16 Page 9 of 17

the visual programming interface, without resorting to traditional text-based program-

ming. This is a convenient trade-off between black-box and informed design/use.

Figure 1 shows an example of pipelines for single nucleotide variant calling from

fastq files, using UGENE’s and Galaxy’s workflow builders. Both workflow builders fea-

ture block connectors that well represent the aforementioned VP entity. Likewise, one

could consider a saved workflow as a meta-block. Building blocks and block engines

are inherently fused, and each block corresponds to a program that has been installed

in Galaxy or UGENE (e.g. Sickle, CASAVA, Bowtie2, BWA). If any of the workflow

could allow access functions of a generic programming library (e.g. SeqAn), with a cor-

responding distinction between block hierarchies and functionality, there would be an

improvement in expressive power, which would not be limited to the sole ability of

pipelining compiled programs. Notably, the UGENE workflow builder is made with the

cross-platform Qt C++ Library, which is an ideal development framework for enabling

such transition.

Physiognomy of visual programming

By definition, VP facilitates various aspects of the process of software design and brings

closer the user and the developer. Development policies for VP should follow the same

prerogatives. One way to achieve this can be through the adoption of the Agile meth-

odology [81], which implements code and develops user interfaces at the same time,

with an adaptive strategy of real-time planning. Agile is an efficient and face-to-face

communication between developers, stakeholders, and final users, blending the charac-

teristics of different disciplines directly into the final product. We believe the Agile

Fig. 1 Example of a pipeline for single nucleotide variant calling from fastq files, using Galaxy’s (top) and
UGENE’s (bottom) workflow builders

Milicchio et al. BioData Mining (2016) 9:16 Page 10 of 17

method can be appropriate for development of NGS tools via VP, when a library base is

already available (e.g. SeqAn), yet it must be delivered to users with a different expertise

and must meet their usage needs. Independently of the chosen development method-

ology, a VP framework for NGS should meet the following requirements: flexibility,

scalability, transparency, usability, modularity, and interoperability. As summarized in

Fig. 2, each of these characteristics affects either a user’s or a developer’s needs. For in-

stance, flexibility of a VP product concerns its capacity to be workable on different de-

vices such as desktops vs. tablets, or feasible for local/server/cloud installations (which

is different from being installable on different operating systems or being usable). Scal-

ability refers to the capacity of the software to scale up with data size increase, by fea-

turing different solutions, such as switching to multithreaded mode or moving analyses

from a localhost to the cloud. Note that there are needs assessments falling in multiple

categories. In fact, the dichotomy of multithreading (say, parallelization within graphic

processing units or central processing units) vs. distribution (e.g. message parsing inter-

face) do relate to scalability, but also to transparency, especially in the case of adoption

of a generic template library programming paradigm. As already mentioned, transpar-

ency can be associated with multiplatform (any operating system) or web-browser-

based implementations. The VP framework and its products must be transparent not

only at the operating system level but also at the hosting level (i.e. local host vs. cloud).

In particular, security on cloud-based computations plays a major role in the potential

applicability of NGS software. In regards to usability, we have already mentioned the

potential advantage of employing the user-oriented Agile methodology. Any product

developed using VP has to be subject to the same verification, validation, quality assur-

ance standards, and common GUI testing schemes [82] like other software, e.g. the

Fig. 2 Physiognomy of visual programming for development of tools for next-generation sequencing
data analytics

Milicchio et al. BioData Mining (2016) 9:16 Page 11 of 17

Institute of Electrical and Electronics Engineers (IEEE) standard verification and valid-

ation IEEE 1012 or quality assurance IEEE 730 [83]. Within a developer’s VP environ-

ment, usability can mean a well-designed set of building blocks and functions. These

are also related to modularity, where the availability of a native generic template pro-

gramming library can make a difference. Finally, interoperability can be divided into

three levels. The first one is software interoperability, which ensures the possibility of

using external pieces of software or libraries. The second level is semantic interoper-

ability, which is the ability to exchange data with unambiguous, shared meaning; when

developing NGS tools this involves keeping track of meta-data information such as li-

brary versioning, file formats, and file interchange formats. The third level is expertise

interoperability, connecting the stakeholders together efficiently by using an appropri-

ate communication infrastructure, such as a users’ forum, like SEQanswers [84], or a

developers’ space, GitHub [85].

As an example, Galaxy has strengths in expertise interoperability (thanks to a nour-

ished developers’ and users’ community), software interoperability (by incorporating a

plethora of different software and toolsets), and transparency (through the web-

browser interface). There is relevant, yet limited, modularity (graphic workflow

builder), and scalability (tool parallelization and server installation). Flexibility is en-

abled by the web-browser GUI. Scalability and interoperability, however, are also sub-

ject to original tools’ capabilities and may not keep up with the pace of the current

technology evolution. Recent efforts in interoperability for development and

standardization of NGS pipelines (i.e. importable in Galaxy and other frameworks) have

been concretized in the open source Rabix toolkit [86] for developing and running

portable workflows based on the Common Workflow Language specification [87].

Illumina’s BaseSpace and UGENE are strong in usability and flexibility, but are behind

Galaxy in other requisites; none of the available suites has a proper VP interface.

A conceptual VP framework that incorporates many of the prerogatives, named

VisPro, has been proposed by Milicchio et al. in 2005 [88], with a case study tailored to

development of tools for complex geometric routines. VisPro was developed using the

cross-platform Qt Library, like UGENE. More recently, VisPro was extended to web-

based applications securely connected to the cloud [89]. In Fig. 3, a diagram of the VP

framework for developing next-generation sequencing analytics tools is shown. The VP

Builder is the graphical development unit, i.e. the VP environment, where both an end

user (blue) and a developer (green) can design new program workflows. The end user

has access to the App and/or the Web Browser (i.e. different GUIs) with predefined

pipelines which can be made with the VP Builder or even with command-line program-

ming (e.g. a VP Project). The developer has access to all the low-level, command-line

features besides the VP. The VP Interoperable Engine contains all the functions of a

generic programming template library, provides compatibility with external programs,

e.g. with the JavaScript Object Notation [90, 91] as with Rabix, and runs locally or in

the cloud. VisPro prefigured a secure solution based on a client-server architecture for

scheduling programs in the cloud [89]; the computational kernel that actually executes

a program may be local or remote (i.e. on a cluster), and in the latter case, the client

submits, via an encrypted channel and with a secure authentication method –such as

secure-socket layer (SSL) certificates or Kerberos [92, 93]– the visual program to a ser-

ver. The remote scheduler then executes the program on all available nodes as

Milicchio et al. BioData Mining (2016) 9:16 Page 12 of 17

resources become available, leaving the client free to perform other operations. Select-

ing a local or remote kernel would require only a minimal user intervention, i.e. login

host, user name, and password.

Discussion

NGS data science (or analytics) is an interdisciplinary and critical field of bioinformat-

ics research that has gained increased attention and visibility upon the explosion of

NGS technology. It is a sector which has to keep up with the tremendous advancement

in sequencing yield and ‘next-NGS’ (future generation) technologies. NGS data science

is feasible when proper software is available and can routinely and reliably be used, with

reasonable resource spending. The development of software tools for NGS analytics is

challenging, given multiple practical hurdles that include the large data sizes, data het-

erogeneity, and data errors. Despite the glut of NGS software released in the past years,

the toolsets are not yet homogenized as they are in other fields (e.g. statistics, automa-

tion). We have reviewed the current panorama of low-level software for NGS (i.e. li-

braries and toolsets) used mainly by developers, and high-level suites (i.e. all-purpose

programs with GUIs) used by stakeholders, biological scientists performing experi-

ments for instance. Among the reviewed software libraries, we have identified a positive

effort of the Open Bioinformatics Foundation in promoting the ‘Bio’ extensions to

programming languages, such as BioJava, BioPerl, BioRuby, BioPHP, et cetera. However,

these toolsets are often not well calibrated for the NGS needs (e.g. scalability of

methods). Among the NGS-specific libraries, we have identified SeqAn (open source,

Fig. 3 The conceptual visual programming (VP) framework for developing next-generation sequencing data
analytics tools

Milicchio et al. BioData Mining (2016) 9:16 Page 13 of 17

C++) as the most promising one, because on top of its specificity, it is a generic

programming template framework that can seamlessly upgrade itself. SeqAn has

already been used in many proof-of-concept works providing efficient/optimized re-

implementation of existing methods. Still, low-level libraries are instruments for

software developers, not for end users. For the latter, high-level software suites with

user-friendly GUIs are available. We have reviewed both commercial and free suites,

including Galaxy and Geneious. This general-purpose software usually wraps around

existing command-line tools, which may not have been programmed using consist-

ent libraries or programming languages. The suites offer premade pipelines to

analyze specific data sets (e.g. RNASeq) with a simple click, combining different pro-

grams together. Usability should be the key feature of these graphical suites. Some of

the suites also offer the possibility to create ad hoc workflows, but the functionalities

are limited; new programs are hard to develop. At the moment workflow design is

bound to existing programs present in the suite, but some workflow builders could

be modified to incorporate NGS libraries in the near future.

Visual programming is used in many sectors of software development, such as educa-

tion, architecture, and video game design. The visual programming philosophy linked

to generic template libraries, seen as a powerful extension of workflow builders, can be

a valuable aid for improving NGS tool and workflow development. VisPro is a concep-

tual visual programming framework covering a number of requisites that make it

appropriate for development of NGS software (in the need of scalability, transparency,

usability, interoperability), especially if coupled with a powerful generic template

library, like SeqAn. However, instantiating a brand new VisPro for NGS may require a

tremendous development effort. On the other hand, existing general-purpose suites are

supported by a large community of developers, users, and investors; even so, they have

flaws and may be stalled by further technological changes.

In conclusion, visual programming could effectively bridge the gap between software

developers and users needing cutting-edge software, making NGS data science fully

translational. While an ex novo development of VP software specific for NGS may be

unfeasible, trying to improve the visual programming capabilities of existing software

and the interoperability with low-level libraries could be a preferred course of action.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
FM contributed on libraries and visual programming, wrote/reviewed manuscript; RR contributed on graphical tools,
wrote/reviewed manuscript; JB contributed on visual programming, reviewed manuscript; JM provided evaluation of
software features, workflow comparison and building, reviewed manuscript; MP designed the work, wrote/reviewed
manuscript. All authors read and approved the manuscript.

Acknowledgments
The VIROGENESIS project receives funding from the European Union’s Horizon 2020 research and innovation
programme under grant agreement No 634650.

Author details
1Department of Engineering, Roma Tre University, Rome, Italy. 2Bioinfoexperts, LLC, Thibodaux, LA, USA. 3Department
of Health Outcomes and Policy, University of Florida, Gainesville, FL, USA. 4Department of Epidemiology, College of
Public Health and Health Professions & College of Medicine, University of Florida, 2004 Mowry Road, Gainesville
32610-0231, FL, USA.

Received: 22 January 2016 Accepted: 21 April 2016

Milicchio et al. BioData Mining (2016) 9:16 Page 14 of 17

References
1. Xuan J, Yu Y, Qing T, Guo L, Shi L. Next-generation sequencing in the clinic: promises and challenges. Cancer Lett.

2013;340(2):284–95.
2. van Dijk EL, Auger H, Jaszczyszyn Y, Thermes C. Ten years of next-generation sequencing technology. Trends

Genet. 2014;30(9):418–26.
3. Ohashi H, Hasegawa M, Wakimoto K, Miyamoto-Sato E. Next-generation technologies for multiomics approaches

including interactome sequencing. BioMed Res Int. 2015;2015:104209.
4. Beggs AD, Dilworth MP. Surgery in the era of the 'omics revolution. Br J Surg. 2015;102(2):e29–40.
5. Mensaert K, Denil S, Trooskens G, Van Criekinge W, Thas O, De Meyer T. Next-generation technologies and data

analytical approaches for epigenomics. Environ Mol Mutagen. 2014;55(3):155–70.
6. Mason CE, Porter SG, Smith TM. Characterizing multi-omic data in systems biology. Adv Exp Med Biol. 2014;799:15–38.
7. Grada A, Weinbrecht K. Next-generation sequencing: methodology and application. J Invest Dermatol.

2013;133(8):e11.
8. Berger B, Peng J, Singh M. Computational solutions for omics data. Nat Rev Genet. 2013;14(5):333–46.
9. Metzker ML. Sequencing technologies - the next generation. Nat Rev Genet. 2010;11(1):31–46.
10. Koboldt DC, Steinberg KM, Larson DE, Wilson RK, Mardis ER. The next-generation sequencing revolution and its

impact on genomics. Cell. 2013;155(1):27–38.
11. Hawkins RD, Hon GC, Ren B. Next-generation genomics: an integrative approach. Nat Rev Genet. 2010;11(7):476–86.
12. Azarian T, Cook RL, Johnson JA, Guzman N, McCarter YS, Gomez N, McCarter YS, Gomez N, Rathore MH,

Morris JGJ, Salemi M. Whole-Genome Sequencing for Outbreak Investigations of Methicillin-Resistant
Staphylococcus aureus in the Neonatal Intensive Care Unit: Time for Routine Practice? Infect Control Hosp
Epidemiol. 2015;FirstView:1–9.

13. Berger G, Bitterman R, Azzam ZS. The human microbiota: the rise of an “empire”. Rambam Maimonides Med J.
2015;6(2):e0018.

14. Buermans HP, den Dunnen JT. Next generation sequencing technology: Advances and applications. Biochim
Biophys Acta. 2014;1842(10):1932–41.

15. Illumina Inc. [http://www.illumina.com/]. Accessed 25 Apr 2016.
16. James F. Welles Replies. J Infor Ethics. 2012;21(1):5–6.
17. Roche Sequencing. [http://sequencing.roche.com/]. Accessed 25 Apr 2016.
18. Pacific Biosciences. [http://www.pacb.com/].
19. Facio FM, Lee K, O’Daniel JM. A genetic counselor’s guide to using next-generation sequencing in clinical practice.

J Genet Couns. 2014;23(4):455–62.
20. Aronson N. Making personalized medicine more affordable. Ann N Y Acad Sci. 2015;1346(1):81-9. doi:10.1111/nyas.

12614. Epub 2015 Feb 27.
21. Desai AN, Jere A. Next-generation sequencing: ready for the clinics? Clin Genet. 2012;81(6):503–10.
22. Sanger F, Coulson AR. A rapid method for determining sequences in DNA by primed synthesis with DNA

polymerase. J Mol Biol. 1975;94(3):441–8.
23. Niedringhaus TP, Milanova D, Kerby MB, Snyder MP, Barron AE. Landscape of next-generation sequencing

technologies. Anal Chem. 2011;83(12):4327–41.
24. el Bahassi M, Stambrook PJ. Next-generation sequencing technologies: breaking the sound barrier of human

genetics. Mutagenesis. 2014;29(5):303–10.
25. Service RF. Gene sequencing. The race for the $1000 genome. Science. 2006;311(5767):1544–6.
26. Feng Y, Zhang Y, Ying C, Wang D, Du C. Nanopore-based Fourth-generation DNA Sequencing Technology.

Genomics Proteomics Bioinformatics. 2015;13(1):4–16.
27. Ying YL, Zhang J, Gao R, Long YT. Nanopore-based sequencing and detection of nucleic acids. Angew Chem Int

Ed Engl. 2013;52(50):13154–61.
28. DNA Sequencing Costs. [http://www.genome.gov/sequencingcosts/]. Accessed 25 Apr 2016.
29. Baker M. Next-generation sequencing: adjusting to data overload. Nat Meth. 2010;7(7):495–9.
30. Vyverman M, De Baets B, Fack V, Dawyndt P. Prospects and limitations of full-text index structures in genome

analysis. Nucleic Acids Res. 2012;40(15):6993–7015.
31. Bao R, Huang L, Andrade J, Tan W, Kibbe WA, Jiang H, Feng G. Review of current methods, applications,

and data management for the bioinformatics analysis of whole exome sequencing. Cancer Informat.
2014;13 Suppl 2:67–82.

32. Finotello F, Di Camillo B. Measuring differential gene expression with RNA-seq: challenges and strategies for data
analysis. Brief Funct Genomics. 2015;14(2):130–42.

33. Yu B. Setting up next-generation sequencing in the medical laboratory. Methods Mol Biol. 2014;1168:195–206.
34. Shyr C, Kushniruk A, Wasserman WW. Usability study of clinical exome analysis software: top lessons learned and

recommendations. J Biomed Inform. 2014;51:129–36.
35. SEQanswers’ List of Next Generation Sequencing Software. [http://seqanswers.com/wiki/Software/list].

Accessed 25 Apr 2016.
36. Barnett DW, Garrison EK, Quinlan AR, Stromberg MP, Marth GT. BamTools: a C++ API and toolkit for analyzing and

managing BAM files. Bioinformatics. 2011;27(12):1691–2.
37. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R, Genome Project Data

Processing S. The Sequence Alignment/Map format and SAMtools. Bioinformatics. 2009;25(16):2078–9.
38. Nordell Markovits A, Joly Beauparlant C, Toupin D, Wang S, Droit A, Gevry N. NGS++: a library for rapid

prototyping of epigenomics software tools. Bioinformatics. 2013;29(15):1893–4.
39. Plieskatt J, Rinaldi G, Brindley PJ, Jia X, Potriquet J, Bethony J, Mulvenna J. Bioclojure: a functional library for the

manipulation of biological sequences. Bioinformatics. 2014;30(17):2537–9.
40. libStatGen. [https://github.com/statgen/libStatGen/]. Accessed 25 Apr 2016.
41. Pitt WR, Williams MA, Steven M, Sweeney B, Bleasby AJ, Moss DS. The Bioinformatics Template Library–generic

components for biocomputing. Bioinformatics. 2001;17(8):729–37.

Milicchio et al. BioData Mining (2016) 9:16 Page 15 of 17

http://www.illumina.com/
http://sequencing.roche.com/
http://www.pacb.com/
http://dx.doi.org/10.1111/nyas.12614
http://dx.doi.org/10.1111/nyas.12614
http://www.genome.gov/sequencingcosts/
http://seqanswers.com/wiki/Software/list
https://github.com/statgen/libStatGen/

42. Dutheil J, Gaillard S, Bazin E, Glemin S, Ranwez V, Galtier N, Belkhir K. Bio++: a set of C++ libraries for sequence
analysis, phylogenetics, molecular evolution and population genetics. BMC Bioinf. 2006;7:188.

43. Rice P, Longden I, Bleasby A. EMBOSS: the European Molecular Biology Open Software Suite. Trends Genet.
2000;16(6):276–7.

44. Goto N, Prins P, Nakao M, Bonnal R, Aerts J, Katayama T. BioRuby: bioinformatics software for the Ruby
programming language. Bioinformatics. 2010;26(20):2617–9.

45. Cock PJ, Antao T, Chang JT, Chapman BA, Cox CJ, Dalke A, Friedberg I, Hamelryck T, Kauff F, Wilczynski B, et al. Biopython:
freely available Python tools for computational molecular biology and bioinformatics. Bioinformatics. 2009;25(11):1422–3.

46. Holland RC, Down TA, Pocock M, Prlic A, Huen D, James K, Foisy S, Drager A, Yates A, Heuer M, et al. BioJava: an
open-source framework for bioinformatics. Bioinformatics. 2008;24(18):2096–7.

47. Stajich JE, Block D, Boulez K, Brenner SE, Chervitz SA, Dagdigian C, Fuellen G, Gilbert JG, Korf I, Lapp H, et al. The
Bioperl toolkit: Perl modules for the life sciences. Genome Res. 2002;12(10):1611–8.

48. Open Bioinformatics foundation. [http://www.open-bio.org/]. Accessed 25 Apr 2016.
49. Huber W, Carey VJ, Gentleman R, Anders S, Carlson M, Carvalho BS, Bravo HC, Davis S, Gatto L, Girke T, et al.

Orchestrating high-throughput genomic analysis with Bioconductor. Nat Methods. 2015;12(2):115–21.
50. Gentleman RC, Carey VJ, Bates DM, Bolstad B, Dettling M, Dudoit S, Ellis B, Gautier L, Ge Y, Gentry J, Hornik K,

Hothorn T, Huber W, Iacus S, Irizarry R, Leisch F, Li C, Maechler M, Rossini AJ, Sawitzki G, Smith C, Smyth G, Tierney
L, Yang JY, Zhang J. Bioconductor: open software development for computational biology and bioinformatics.
Genome Biol. 2004;5(10):R80. Epub 2004 Sep 15.

51. Mangalam H. The Bio* toolkits–a brief overview. Brief Bioinform. 2002;3(3):296–302.
52. Doring A, Weese D, Rausch T, Reinert K. SeqAn an efficient, generic C++ library for sequence analysis. BMC Bioinf.

2008;9:11.
53. Gogol-Döring A, Reinert K. Biological sequence analysis using the SeqAn C++ library. Boca Raton: CRC Press; 2010.
54. Mason CE, Zumbo P, Sanders S, Folk M, Robinson D, Aydt R, Gollery M, Welsh M, Olson NE, Smith TM. Standardizing the

Next Generation of Bioinformatics Software Development with BioHDF (HDF5). Adv Comput Biol. 2010;680:693–700.
55. Rahn R, Weese D, Reinert K. Journaled string tree-a scalable data structure for analyzing thousands of similar

genomes on your laptop. Bioinformatics. 2014;30(24):3499–505.
56. Schulz MH, Weese D, Holtgrewe M, Dimitrova V, Niu S, Reinert K, Richard H. Fiona: a parallel and automatic

strategy for read error correction. Bioinformatics. 2014;30(17):i356–363.
57. Hauswedell H, Singer J, Reinert K. Lambda: the local aligner for massive biological data. Bioinformatics.

2014;30(17):i349–355.
58. Gremme G, Steinbiss S, Kurtz S. GenomeTools: a comprehensive software library for efficient processing of

structured genome annotations. IEEE/ACM Trans Comput Biol Bioinform. 2013;10(3):645–56.
59. Stroustrup B. The C++ Programming Language (4th Edition). Boston, MA, USA: Addison-Wesley Professional; 2013.
60. Pataki N, Porkolab Z. Extension of iterator traits in the C++ Standard Template Library. In: Computer

Science and Information Systems (FedCSIS), 2011 Federated Conference on: 18-21 Sept. 2011. 2011. p. 911–4.
61. Illumina’s BaseSpace. [https://basespace.illumina.com/]
62. CLCBio. [http://www.clcbio.com/]
63. DNASTAR. [http://www.dnastar.com/]
64. Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S, Buxton S, Cooper A, Markowitz S, Duran

C, et al. Geneious Basic: an integrated and extendable desktop software platform for the organization and
analysis of sequence data. Bioinformatics. 2012;28(12):1647–9.

65. Giardine B, Riemer C, Hardison RC, Burhans R, Elnitski L, Shah P, Zhang Y, Blankenberg D, Albert I, Taylor J, et al.
Galaxy: a platform for interactive large-scale genome analysis. Genome Res. 2005;15(10):1451–5.

66. Goecks J, Nekrutenko A, Taylor J, Galaxy T. Galaxy: a comprehensive approach for supporting accessible,
reproducible, and transparent computational research in the life sciences. Genome Biol. 2010;11(8):R86.

67. Madduri RK, Sulakhe D, Lacinski L, Liu B, Rodriguez A, Chard K, Dave UJ, Foster IT. Experiences Building Globus
Genomics: A Next-Generation Sequencing Analysis Service using Galaxy, Globus, and Amazon Web Services.
Concurr Comput. 2014;26(13):2266–79.

68. Wattam AR, Abraham D, Dalay O, Disz TL, Driscoll T, Gabbard JL, Gillespie JJ, Gough R, Hix D, Kenyon R, et al. PATRIC,
the bacterial bioinformatics database and analysis resource. Nucleic Acids Res. 2014;42(Database issue):D581–591.

69. Golosova O, Henderson R, Vaskin Y, Gabrielian A, Grekhov G, Nagarajan V, Oler AJ, Quinones M, Hurt D, Fursov M, et al.
Unipro UGENE NGS pipelines and components for variant calling, RNA-seq and ChIP-seq data analyses. PeerJ. 2014;2:e644.

70. Okonechnikov K, Golosova O, Fursov M, Team U. Unipro UGENE: a unified bioinformatics toolkit. Bioinformatics.
2012;28(8):1166–7.

71. Glinert EP. Visual Programming Environments: Paradigms and Systems. Los Alamitos, CA, USA: IEEE Computer
Society Press; 1990.

72. Shu N. Visual Programming Languages: A Perspective and a Dimensional Analysis. In: Chang S-K, Ichikawa T,
Ligomenides P, editors. Visual Languages. US: Springer; 1986. p. 11–34.

73. Cypher A, editor. Watch what I do: programming by demonstration. Cambridge, MA, USA: MIT Press; 1993.
74. Lieberman H, editor. Your wish is my command: programming by example. San Francisco, CA, USA: Morgan

Kaufmann Publishers Inc; 2001.
75. Brooks R. Watch What I Do - Programming by Demonstration - Cypher,A. Int J Man Mach Stud. 1993;39(6):1054–5.
76. Green TRG, Petre M. Usability analysis of visual programming environments: A ‘cognitive dimensions’ framework. J

Visual Lang Comput. 1996;7(2):131–74.
77. MacLaurin M. The Design of Kodu: A Tiny Visual Programming Language for Children on the Xbox 360. Acm

Sigplan Notices. 2011;46(1):241–5.
78. Busby J, Parrish Z, Wilson J. Mastering Unreal technology. Indianapolis: Sams; 2010.
79. Evans E. Domain-driven design : tackling complexity in the heart of software. Boston: Addison-Wesley; 2004.
80. Nilsson J. Applying domain-driven design and patterns: with examples in C# and.NET. Upper Saddle River:

Addison-Wesley; 2006.

Milicchio et al. BioData Mining (2016) 9:16 Page 16 of 17

http://www.open-bio.org/
https://basespace.illumina.com/
http://www.clcbio.com/
http://www.dnastar.com/

81. Jain R. Agile Software Development: Adaptive Systems Principles and Best Practices. Inf Syst Manag.
2006;23(3):19–30.

82. Memon AM, Pollack ME, Soffa ML. Using a goal-driven approach to generate test cases for GUIs. In:
Proceedings of the 21st international conference on Software engineering; Los Angeles, California, USA.
302632: ACM 1999: 257-266

83. IEEE 1012. [https://standards.ieee.org/findstds/standard/1012-2012.html]. Accessed 25 Apr 2016.
84. SEQanswers. [http://seqanswers.com/]. Accessed 25 Apr 2016.
85. GitHub. [https://github.com/]. Accessed 25 Apr 2016.
86. Rabix: Reproducible Analyses for Bioinformatics. [https://www.rabix.org/]. Accessed 25 Apr 2016.
87. The Common Workflow Language (CWL). [http://www.commonwl.org]. Accessed 25 Apr 2016.
88. Milicchio F, Paoluzzi A, Bertoli C. A Visual Approach To Geometric Programming. Comput-Aided Des Applic.

2005;2:411–20.
89. Bottaro A, Marino E, Milicchio F, Paoluzzi A, Rosina M, Spini F. Visual Programming of Location-Based Services. In:

Smith M, Salvendy G, editors. Human Interface and the Management of Information Interacting with Information,
vol. 6771. Berlin Heidelberg: Springer; 2011. p. 3–12.

90. Dimou A, Verborgh R, Sande MV, Mannens E, Walle RVd. Machine-interpretable dataset and service descriptions
for heterogeneous data access and retrieval. In: Proceedings of the 11th International Conference on Semantic
Systems; Vienna, Austria. 2814873: ACM 2015: 145-152

91. Lanthaler M, Gütl C. On using JSON-LD to create evolvable RESTful services. In: Proceedings of the Third
International Workshop on RESTful Design; Lyon, France. 2307827: ACM 2012: 25-32

92. Liu HJ, Luo P, Wang DS. A distributed expansible authentication model based on Kerberos. J Netw Comput Appl.
2008;31(4):472–86.

93. Butler F, Cervesato I, Jaggard AD, Scedrov A, Walstad C. Formal analysis of Kerberos 5. Theor Comput
Sci. 2006;367(1-2):57–87.

94. Makinen V. Compressed Full-Text Indexes. Acm Comput Surv. 2007;39(1):1–61.

• We accept pre-submission inquiries

• Our selector tool helps you to find the most relevant journal

• We provide round the clock customer support

• Convenient online submission

• Thorough peer review

• Inclusion in PubMed and all major indexing services

• Maximum visibility for your research

Submit your manuscript at
www.biomedcentral.com/submit

Submit your next manuscript to BioMed Central
and we will help you at every step:

Milicchio et al. BioData Mining (2016) 9:16 Page 17 of 17

https://standards.ieee.org/findstds/standard/1012-2012.html
http://seqanswers.com/
https://github.com/
https://www.rabix.org/
http://www.commonwl.org/

	Abstract
	Background
	Text
	Conclusion

	Main text
	Background
	Template libraries and generic programming
	What is template generic programming?
	General-purpose software suites and graphical user interfaces
	Visual programming
	How can visual programming benefit NGS software development?
	Visual programming entities
	Physiognomy of visual programming
	Discussion

	Competing interests
	Authors’ contributions
	Acknowledgments
	Author details
	References

