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Abstract
Background: Although principal component analysis (PCA) is widely used for the
dimensional reduction of biomedical data, interpretation of PCA results remains
daunting. Most existing interpretation methods attempt to explain each principal
component (PC) in terms of a small number of variables by generating approximate
PCs with mainly zero loadings. Although useful when just a few variables dominate the
population PCs, these methods can perform poorly on genomic data, where
interesting biological features are frequently represented by the combined signal of
functionally related sets of genes. While gene set testing methods have been widely
used in supervised settings to quantify the association of groups of genes with clinical
outcomes, these methods have seen only limited application for testing the
enrichment of gene sets relative to sample PCs.

Results: We describe a novel approach, principal component gene set enrichment
(PCGSE), for unsupervised gene set testing relative to the sample PCs of genomic data.
The PCGSE method computes the statistical association between gene sets and
individual PCs using a two-stage competitive gene set test. To demonstrate the
efficacy of the PCGSE method, we use simulated and real gene expression data to
evaluate the performance of various gene set test statistics and significance tests.

Conclusions: Gene set testing is an effective approach for interpreting the PCs of
high-dimensional genomic data. As shown using both simulated and real datasets, the
PCGSE method can generate biologically meaningful and computationally efficient
results via a two-stage, competitive parametric test that correctly accounts for
inter-gene correlation.

Background
PCA is a well established statistical technique that performs a linear transformation of
multivariate data into a new set of variables, the principal components (PCs), that are
linear combinations of the original variables, are uncorrelated and have sequentially max-
imum variance [1–3]. The solution to PCA is given by the spectral decomposition of the
covariance matrix with the variance of the PCs specified by the eigenvalues, arranged in
decreasing order, and the PC directions specified by the associated eigenvectors.
In the biomedical domain, PCA has been extensively employed for the analysis of

genomic data including measures of DNA variation, DNA methylation and RNA expres-
sion [4]. Features of these datasets that motivate PCA include the high dimensionality of
the feature space, low sample size and significant collinearity. The most common uses of
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PCA with genomic data involve dimensionality reduction for visualization [5, 6] or clus-
tering of the observations [7], with population genetics an important use case [8]. PCA has
also been used as the basis for feature selection [9], gene clustering [10] and bi-clustering
[11]. More recent applications include dimensionality reduction prior to gene set testing
[12, 13] and high-dimensional regression [14].
Although PCA is an effective tool for reducing the dimensionality of genomic data,

application of the method remains limited by the challenge of biological interpretation
[4, 15]. Because PCs are linear combinations of all original variables, which can number
from the thousands to the millions for genomic datasets, they typically lack any clear bio-
logical meaning. While PCA may improve the performance of many statistical methods,
e.g., better predictive accuracy in a regression context, the underlying model is often a
black box.
Approaches for generating more interpretable PCs have evolved from component

thresholding [3], simple components (i.e., PC loading vectors constrained to values from
{−1, 0, 1}) [16] and rotation techniques (e.g., varimax) [17] to sparse PCAmethods, which
compute approximate PCs using cardinality [18] or LASSO-based [15, 19] constraints on
the component loadings. By generating approximate PCs with few non-zero loadings, all
of these techniques improve interpretability by associating only a small number of vari-
ables with each PC. While such sparse PCA methods can be very effective when the
true population PCs are associated with only a few variables, they will fail to accurately
estimate the spectral structure of the data when the population PCs are defined by the
coordinated action of large groups of variables with small marginal effects. For genomic
data, the pathway-based patterns that dominate the robust structure of genetic associa-
tions with clinical phenotypes [20], and are the motivation for traditional gene set testing
methods [21], can be expected to also characterize the PCs of those datasets. The PCs of
genomic data are therefore more likely to be quantitatively described, in a repeatable fash-
ion, by collections of functionally related genes, e.g., gene sets from the Gene Ontology
(GO) [22], than by individual genes.
To support interpretation of PCs in terms of a priori variable groups, rather than just

individual variables, sparse PCA methods have recently been extended to include struc-
tured sparse penalties [23, 24], such as the group lasso [25]. Although structured sparse
PCA techniques generate sparse PC loading vectors that reflect group structure, these
methods cannot be easily used to compute the statistical association between variable
groups and each PC in such a way that the variable groups can be ranked according to
deviation from a specific null hypothesis, as is done in traditional gene set testing. Matrix
correlation methods [3, 26] have also been used to quantify the association between
groups of variables and one or more PCs. However, because such matrix correlation
methods compute the association of each variable group independent of the variables
that do not belong to the group, they can only be used for self-contained gene set tests
[27] (Q2 in the terminology of Tian et al. [28]) in a manner similar to Goeman and
Buhmann’s globaltest [29] and not for competitive gene set testing (Q1 in the terminology
of Tian et al.).
To date, competitive gene set testing relative to PCs has been limited to methods, such

as Fisher’s Exact Test, that are based on a 2× 2 contingency table representing the associ-
ation between gene set membership and a discretization of the ranked list of PC loading
values [30]. Such contingency table tests have two key flaws: they rely on an arbitrary
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threshold of the gene-level test statistic, which reduces statistical power and, more impor-
tantly, they are based on the incorrect assumption of independence among the gene-level
test statistics, causing them to generate high type I error rates [27, 31, 32]. Because of
the anti-conservative nature of contingency table-based tests, and other approaches that
assume independence among gene-level test statistics under the null, the use of these
methods for standard gene set testing has been strongly discouraged in favor of tech-
niques that preserve inter-gene correlation, usually via permutation of the sample labels
[27]. Competitive gene set testing methods that correctly account for correlation among
gene-level test statistics, either through sample permutation, parametric approximation
of the sample permutation distribution or correlation adjustment of parametric test statis-
tics, include SAFE [31, 33, 34], GSEA [35], GSA [36] and CAMERA [32]. All of these
methods, however, are designed for use in a supervised context to measure the statis-
tical significance of the association between sets of genomic variables and a phenotype
variable.
Although biologically meaningful and repeatable interpretation of the PCs of genomic

data requires approaches based on functional gene sets, researchers currently lack meth-
ods that competitively test the association between gene sets and PCs with correct
handling of inter-gene correlation. To address this gap, we have developed principal com-
ponent gene set enrichment (PCGSE), an approach for interpreting the PCs of genomic
data via two-stage competitive gene set testing in which the correlation between each
gene and each PC is used as a gene-level statistic with flexible choice of both the gene set
test statistic and themethod used to compute the null distribution of the gene set statistic.
Although described in the context of functional gene sets and genomic data, the PCGSE
method can be used to compute the statistical association between any collection of vari-
able groups and the PCs of an empirical dataset. To support use of the PCGSE method
by other researchers, we implemented the PCGSE R package, which is available from the
CRAN repository. Using simulated data with simulated gene sets and real gene expression
data with curated gene sets, we demonstrate that biologically meaningful and computa-
tionally efficient results can be obtained from a simple parametric version of the PCGSE
technique, based on the CAMERA method [32], that performs a correlation-adjusted
two-sample t-test between the gene-level test statistics for gene set members and genes
not in the set.

Methods
PCGSE inputs

The PCGSE method takes as input both an n × p genomic data matrix X quantifying
p genomic variables under n experimental conditions and an f × p binary annotation
matrix A that specifies the association between the p genomic variables and f functional
categories.
The genomic data held in X, e.g., mRNA expression levels, will be modeled as a sam-

ple of n independent observations from a p-dimensional random vector x. Although
PCGSE does not have specific distributional requirements, sources of genomic data,
especially gene expression data, are often well approximated by a multivariate nor-
mal distribution after appropriate transformations. It is assumed that any desired data
transformations have been performed and that missing values have been imputed or
removed.
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The rows of the annotation matrix A represent f distinct biological functions, e.g., GO
categories, and the elements ai,j hold indicator variables whose value depends on whether
an annotation exists between the function i and genomic variable j.

PCGSE algorithm

Enrichment of the gene sets defined by A relative to one of the PCs of X is performed
using the following sequence of steps. This workflow is graphically illustrated in Fig. 1
and each step is explained in more detail in the Sections “PCA for PCGSE” thru “Gene
set statistical significance” below. Note that steps 2 thru 5 have close parallels to modules
in Ackermann and Strimmer’s general modular framework for gene set enrichment
analysis [37].

1. Perform PCA on a standardized version of X.
2. Compute gene-level statistics, zj, j = 1, . . . , p, for all p genomic variables that

quantify the association between the genomic variable and the PC.
3. (Optional) Transform the gene-level statistics.
4. Compute gene set statistics, Sk , k = 1, . . . , f , for all f gene sets defined by A using

the gene-level statistics, zj.
5. Determine the statistical significance of the gene set statistics according to a

competitive null hypothesis.

Fig. 1 PCGSE algorithm. Illustration of the PCGSE algorithm as outlined in Section “PCGSE algorithm”. This
schematic is based on the general gene set testing workflow of Ackermann and Strimmer [37]
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Output: For each of the f gene sets, the observed value of the gene set test statistic, Sk ,
and a p-value representing the probability of encountering a gene set statistic as or more
extreme than then the observed Sk under the appropriate competitive null hypothesis.

PCA for PCGSE

Because PCs are not invariant under scaling of the data [3], PCA is performed on a mean
centered and standardized version of X, X̃. The PC loading vectors and variances of X̃
are thus the eigenvectors and eigenvalues of the sample correlation matrix, S = 1/(n −
1)X̃T X̃, rather than the sample covariance matrix. For computational efficiency, the PCA
solution is realized via the singular value decomposition (SVD) of X̃, X̃ = U�VT , where
the columns of V represent the PC loading vectors, the entries in the diagonal matrix �

are proportional to the square roots of the PC variances and the columns of U� are the
PCs.

Gene-level statistics

The PCGSE method supports the following gene-level statistics, represented using the
notation zj, j = 1, . . . , p, for quantifying the association between genomic variable j and
the target PC.

• PC loading. For genomic variable j and target PC m, the gene-level statistic is
element vj,m of matrix V from the SVD of X̃.

• Pearson correlation coefficient. Where the correlation is computed between each
genomic variable and the target PC.

• Fisher-transformed Pearson correlation coefficient. This creates a statistic whose
distribution is approximatelyN (0, 1).

Because the Pearson correlation coefficients between genomic variables and PCs of the
sample correlation matrix are proportional to the PC loadings (see (1) below), all of these
gene-level statistics provide a measure of the correlation between genomic variables and
PCs. Specifically,

PX̃,U� = SX̃,U�
√
1−n�−1 = 1

n − 1
(U�VT )TU

√
1 − n = 1√

n − 1
V� (1)

where U,� and V are from the SVD of X̃, PX̃,U� is the matrix of Pearson correlation
coefficients between the standardized genomic variables held in X̃ and the PCs of X̃, with
element i, j of PX̃,U� set to the Pearson correlation coefficient between column i of X̃
and column j of U�, and SX̃,U�

√
1−n�−1 is the matrix of sample covariances between the

columns of X̃ and the columns of U�
√
1 − n�−1.

The choice between the different gene-level statistics will be guided by the gene set
statistic and significance testing method employed for PCGSE as well as computational
constraints. For example, the added computational expense to generate z-statistics from
correlation coefficients is motivated by parametric tests of the mean difference statistic,
whereas, for rank sum tests, the PC loadings are sufficient.

Transformation of gene-level statistics

An absolute value transformation can optionally be applied to the gene-level statistics,
i.e., z̃j = |zj|. Such a transformation gives the PCGSE method increased power to detect
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scale alternatives, i.e. gene sets that contain both significantly enriched and significantly
repressed genomic variables, whereas the use of untransformed gene-level statistics pro-
vides better power against shift in location alternatives, i.e., gene sets containing genomic
variables with a common direction of association [36].

Gene set statistics

The PCGSE method supports two competitive gene set statistics, represented using the
notation Sk , k = 1, . . . , f , for quantifying the association between gene set k and a
target PC.

Mean difference statistic

This statistic is computed as the standardized difference between the mean of the zj for
genomic variables in the gene set and genomic variables not in the set and corresponds to
UD in the notation of Barry et al. [31]. Benefits of the mean difference statistic include its
parametric null distribution and excellent power, relative to other gene set test statistics,
for shift in location alternatives when using untransformed zj [36]. For gene set k, this
statistic is defined as:

SDk = z̄k − z̄kc

σp
√

1
mk

− 1
p−mk

(2)

wheremk is the number of genes in set k, z̄k is the mean of the zj for members of gene set
k, z̄kc is the mean of the zj for genes not in set k and σp is the pooled standard deviation
of the zj.

Rank sum statistic

This statistic is computed as the standardizedWilcoxon rank sum statistic given the ranks
of the zj for genomic variables in the set and genomic variables not in the set and cor-
responds to UW in the notation of Barry et al. [31]. Benefits of the rank sum statistic
include lack of distributional assumptions and robustness to outliers. For gene set k, the
Wilcoxon rank sum statistic is defined as the sum of the ranks of the gene-level statistic
for all genomic variables belonging to gene set k minus the minimum possible value for
this sum of ranks: Wk = ∑p

j=1 ak,jRank(zj) − mk(mk+1)
2 , where mk = ∑p

j=1 ak,j, the size
of gene set k. A version of this statistic that has an asymptoticN (0, 1) distribution under
the null can be generated as:

SWk = Wk − μWk

σ 2
Wk

(3)

where μWk = (mk(p − mk))/2 and σ 2
Wk

= (mk(p − mk)(mk + 1))/12.

Gene set statistical significance

To compute the statistical significance of the association between gene set k and a target
PC, the distribution of the gene set statistic Sk must be calculated under the appropri-
ate null hypothesis. The PCGSE approach supports three different methods (parametric,
correlation-adjusted parametric and permutation) for computing the competitive null
distributions of the standardizedmean difference statistic, SDk , and standardized rank sum
statistic, SWk , defined in (2) and (3) respectively.
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Parametric tests

Under the competitive H0 that the zj are i.i.d, SDk has a t-distribution with p − 2 df and
a two-sided t-test can therefore be used to determine statistical significance. For SWk , the
asymptotic standard normal distribution under thisH0 can be used as the basis for a two-
sided z-test. Both of these parametric tests fall into the class 1 test category as outlined in
Barry et al. [31] and are similar to the Q1 test defined by Tian et al. [28].
While it is often safe to assume a normal distribution for the zj, especially after trans-

formation, the zj will not be independent. Indeed, because the zj used with PCGSE
are proportional to the PC loadings, they have an asymptotic multivariate normal dis-
tribution [38], assuming multivariate normality for the underlying genomic data, with
significant correlation present between the loadings associated with the genes that have
high pair-wise correlations [3]. Because both the t-test for SDk and the z-test for SWk
ignore this correlation between the zj, they will generate inflated type I error rates. These
tests are therefore only supported by the PCGSE method for the purpose of comparative
evaluation.

Correlation-adjusted parametric tests

A computationally efficient approach for addressing correlation among the zj involves
the use of correlation-adjusted parametric tests. Correlation-adjusted versions of SDk and
SWk were first discussed in the context of gene set testing by Barry et al. [31]. Simplified
versions of these correlation-adjusted statistics were later developed into the CAMERA
method by Wu et al. [32]. Specifically, the approach taken by CAMERA assumes that
correlation among the zj can be approximated by the correlation among the genomic
variables (this is supported by results in Barry et al. [31]), ignores all inter-gene corre-
lation except the correlation among the members of the tested gene set and estimates a
single average pair-wise correlation for gene set members using residuals from a linear
regression.
The PCGSE method makes similar simplifying assumptions as those made by

CAMERA, i.e., correlation between the zj can be approximated by correlation among the
genomic variables, only gene set members have non-zero inter-gene correlation and all
pair-wise correlations between gene set members are the same. An important difference
between PCGSE and CAMERA is that PCGSE estimates the average inter-gene correla-
tion directly from the sample correlation matrix. The correlation-adjusted standardized
mean difference statistic used by PCGSE is:

SD,adjk = z̄k − z̄kc

σp
√

VIF
mk

− 1
p−mk

(4)

where VIF (variance inflation factor)= 1 + (mk − 1)ρ̄k and ρ̄k is the average Pearson
correlation coefficient between members of gene set k. Following Wu et al. [32], this
correlation-adjusted statistic has a t-distribution with n − 2 df under H0. Likewise the
correlation-adjusted standardized rank sum statistic is computed as:

SW ,adj
k = Wk − μWk

σ 2
VIF,Wk

(5)

where σ 2
VIF,Wk

= (mk(p − mk))/(2π)(sin−1(1) + (p − mk − 1)sin−1(.5) + (mk − 1)
(p−mk − 1)sin−1(ρ̄k/2) + (mk − 1)sin−1((ρ̄k + 1)/2)), as derived in Wu et al. [32] based
on the formula in Barry et al. [31].
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Permutation test

The most common approach in the gene set testing literature for addressing correlation
between the zj has been sample permutation. This approach, which corresponds to the
class 2 test in Barry et al. [31], generates the null distribution of the Sk via permutation
of the outcome variable. For each permutation of the outcome variable, all zj are recom-
puted to generate permutation statistics z∗j and then permutation gene set statistics S∗

k are
calculated using the z∗j . The statistical significance for a given gene set k is based on the
proportion of all permutation S∗

k more extreme than the observed Sk . In standard gene set
testing, permutation is applied to a clinical outcome variable, e.g., a case/control label.
For PCGSE, permutation is applied to the elements of the target PC, i.e., the elements

of one of the columns of U�. Because permutation is applied to the PC elements, this
test can only be used with Pearson correlation coefficients or Fisher-transformed Pear-
son correlation coefficients as gene-level statistics since only these gene-level statistics
can be recomputed after permutation of the PC elements (the PC loadings are fixed). A
key assumption of the permutation null distribution is that the permuted values are i.i.d.
Assuming the original n observations of the p-dimensional random vector x are i.i.d, the
elements of each PC will also be i.i.d., since each PC is a linear function of the original x.
Permutation of the PC elements therefore generates a valid permutation distribution for
both SDk and SWk .
Because permutation tests handle correlation among the zj without attempting to esti-

mate this correlation or make simplifying assumptions about the correlation structure,
they are likely the most accurate of the statistical tests supported by PCGSE and are
therefore used to evaluate the performance of the parametric and correlation-adjusted
parametric tests. The exact permutation test was also used as a “gold-standard” in
Zhou et al. [34]. Although they provide superior handling of inter-gene correlation,
permutation tests do suffer from two important disadvantages relative to parametric
tests: computational complexity and lower power to detect gene sets whose members
all have a small common association with the outcome. Because of these disadvantages,
correlation-adjusted parametric tests are preferred for most PCGSE applications.
Another alternative to sample permutation testing that addresses the key challenge of

computational complexity is the parametric approximation of the sample permutation
distribution of gene-level score statistics developed by Zhou et al. [34]. Although the
Zhou et al. beta distribution-based parametric approximations may be a useful option
for the PCGSE method, it is not currently supported due to the lack of a parametric
approximation for a directional, competitive gene set test statistic that is equivalent to SDk
or SWk using untransformed zj. In Zhou et al. [34], parametric approximations are only
detailed for two self-contained gene set test statistics (sum of the score statistics and sum
of the squares of the score statistics) and one non-directional competitive test statistic
(a weighted sum of the squares of local score statistics).

PCGSE evaluation

Benchmark PC gene set testingmethod

Because contingency table-based tests represent the current state-of-the-art for compet-
itive gene set testing relative to the sample PCs of genomic data [30], it is important to
compare the performance of the PCSGSEmethod, specifically the tests based on the SD,adj

and SW ,adj gene set statistics, against tests based on a 2×2 contingency table populated via
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a discretization of the ranked list of PC loading values. Since tests based on a discretiza-
tion of the gene-level test statistics, e.g., Pearson’s difference in proportions test [31], are
simply a special case of the unadjusted mean difference statistic, SD, the PCGSE method
using the unadjusted t-test can be used as a proxy for existing contingency table methods
in both the simulation and real data examples. Furthermore, because a two-sample t-test
based on SD is more powerful than the corresponding contingency table test based on
a discretization of the gene-wise test statistics, this comparison is conservative, i.e., the
difference in performance between the PCGSE method using SD,adj or SW ,adj and con-
tingency table tests should be greater than the difference between PCGSE using SD,adj or
SW ,adj and PCGSE using SD.

Evaluation using simulated gene sets and simulated data

As a simple example, the PCGSE method was used to compute the statistical association
between 20 disjoint gene sets, each of size 10, against the PCs of 1,000 simulated gene
expression datasets each comprised by 75 independent observations of a 200-dimensional
random vector simulated according to a multivariate normal distribution ∼ MVN(μ,�).
The population covariance matrix was generated as: � = λ1α1α

T
1 +λ2α2α

T
2 +λdI, where

λ1 = 2, λ2 = 1, λd = 0.1, α1 is a 200-dimensional vector with all elements equal to 0 except
for the first 10 which were set to

√
.1, α2 is a 200-dimensional vector with all elements

equal to 0 except for the second 10 which were set to
√
.1. Figure 2 graphically illustrates

the variance and loadings of the population and sample PCs simulated according to this

Fig. 2 Simulation model. Variances and loadings for the principal components a 200-dimensional population
covariance matrix, �, and the sample covariance matrix estimated from n = 75 independent observations of
the random vector x ∼ MV N(0,�) where � is generated according to the model outlined in Section
“Benchmark PC gene set testing method”. Variances for the first ten population PCs are shown in plot (a) and
loadings for the first two population PCs are shown in plots (c) and (e). Plots b, d and f show the corresponding
variances and loadings for the sample PCs of a single simulated dataset
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model. The PCGSE method was executed using the Fisher-transformed Pearson correla-
tion coefficient between each variable and each PC as the zj with SDk , as defined in (2), as
the gene set test statistic. The statistical significance of the association between each of
the 20 simulated gene sets and each PC was computed using all supported tests described
in Section “Gene set statistical significance” with 10,000 permutations for the permuta-
tion tests. Because the true association was known between simulated gene sets and the
PCs of the simulated data, it was possible to compute contingency table statistics. In this
case, the type I error rates for the different statistical testing methods were computed for
gene set 2 relative to PC 1 and for gene set 1 relative to PC 2, both cases with no true
association.

Evaluation using Spellman et al. α factor-synchronized yeast gene expression data and yeast

cell cycle gene sets

The PCGSE method was used to compute the statistical association of the yeast cell cycle
gene sets defined by Spellman et al. [39] relative to the first three PCs of a specially
processed version of the α factor-synchronized yeast gene expression data collected by
Spellman et al. and re-examined by Alter et al. [5]. Both the α factor-synchronized data
and yeast cell cycle gene sets were downloaded from the Additional file 1 website for Alter
et al. To support comparison against the results reported in Alter et al., PCA was per-
formed on a version of the gene expression data that was specially processed according to
the steps outlined in Alter et al. so that the first three PCs were identical to the first three
so-called eigengenes. A reproduction of Fig. 5 from Alter et al. is included as Fig. 2 in
Additional file 1 with the value of the first three PCs of the specially processed gene 350
expression data shown relative to the 22 α factor arrays. The PCGSEmethodwas executed
on the Spellman et al. data and gene sets using the Fisher-transformed Pearson correla-
tion coefficient between each gene and each PC as the zj with SDk as the gene set statistic.
The statistical significance of the gene set statistic was computed using all supported tests
described in Section “Gene set statistical significance” with 10,000 permutations for the
permutation tests.

Evaluation usingMSigDBC2 v4.0 gene sets andArmstrong et al. leukemia gene expression data

The PCGSE method was also used to compute the statistical association between the
MSigDB C2 v4.0 gene sets and the first 3 PCs of the leukemia gene expression data [40]
used in the 2005 GSEA paper [35]. The MSigDB C2 v4.0 cancer modules and collapsed
leukemia gene expression data were both downloaded from the MSigDB repository. With
a minimum gene set size of 15 and maximum gene set size of 200, 3,076 gene sets out
of the original 4,722 were used in the analysis. The PCGSE method was executed using
the Fisher-transformed Pearson correlation coefficient between each genomic variable
and each PC as the zj and SDk as the gene set test statistic. The statistical significance of
the association between each of the MSigDB C2 gene sets and each of the first 3 PCs
of the standardized leukemia gene expression data was computed using all supported
tests described in Section “Gene set statistical significance” with 10,000 permutations
for the permutation tests. The enrichment of the MSigDB C2 gene sets was also com-
puted relative to the acute myeloid leukemia (AML) versus acute lymphoblastic leukemia
(ALL) phenotype using the GSA method [36] with the restandardized mean statistic and
10,000 permutations. For each of the first three PCs and each of the PCGSE methods
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for computing statistical significance of the standardized mean difference gene set statis-
tic, the Spearman correlation coefficient was computed between PC gene set enrichment
p-values and phenotype enrichment p-values. For PC 2, for which the PC and pheno-
type gene set enrichment p-values were highly correlated, contingency table statistics
were computed measuring how well PCGSE was able to identify MSigDB C2 gene sets
significantly associated with the AML/ALL phenotype.

Results and discussion
Simulation example

According to the population covariance matrix, �, used to simulate the 1,000 datasets,
only the first gene set should be significantly enriched on the first PC and only the second
gene set should be significantly enriched on the second PC. This relationship can be seen
easily in the loading values for population PCs 1 and 2 as shown in Fig. 2, plots (c) and
(e). The significant loading of gene set 2 on PC 2, however, will result in a high pair-wise
correlation between the PC loadings for gene set 2 members on PC 1. The fact that high
loadings on one PC result in correlation among the PC loadings on other PCs follows
from the formula for the asymptotic distribution of the PC loadings for MVN data [38]:
vj ∼ N (αj,Tj),Tj = λj

n−1
∑p

k=1,k �=j
λkαkαk

T

(λk−λj)
, where j = 1, . . . , p, p is fixed and n → ∞, λj

is an eigenvalue of the population covariance matrix, λ1 > λ2 > . . . > λp, and αj is an
eigenvector of the population covariance matrix.
The gene-level test statistics computed for gene set 2 on PC 1 and for gene set 1 on PC

2 will therefore have a non-zero average pair-wise correlation. The impact of this corre-
lation between the gene-level test statistics can be seen in the PCGSE results shown in
Fig. 3. The unadjusted t-test uses an incorrectly small variance for the SDk gene set statistic
and, as expected, generates the high type I error rate of 0.382 given a nominal α of 0.05
for gene set 2 relative to PC 1 and 0.257 for gene set 1 relative to PC 2. The correlation-
adjusted two-sided t-test and the two-sided permutation test are much more successful
at controlling the type I error rate. For PC 1 and gene set 2, the type I error rate was 0.057
for the correlation-adjusted t-test and 0.05 for the permutation test. For PC 2 and gene set
1, the type I error rate was 0.016 for the correlation-adjusted t-test and 0.014 for the per-
mutation test. For this example, all gene set testing methods were able to correctly reject
the null hypothesis for almost all cases where the gene set had a true association with the
PC, e.g., gene set 1 relative to PC 1 and gene set 2 relative to PC 2.When this simulation is
performed with smaller sample sizes, both the type I and type II error rates increase due
to increased uncertainty in the estimation of the sample covariance matrix and sample
PCs (results not shown). The lower type I error rates for gene set 1 relative to PC 2 versus
gene set 2 relative to PC 1 can be explained by the larger uncertainty in the estimation
of the eigenvector for the second PC relative to the first PC and the consequent overesti-
mation of correlation between gene-level test statistics. PCGSE results computed for this
simulation example using SWk as the gene set statistic can be found in the Additional file 1.
Although based on a simple two-factor MVN model, this simulation example demon-

strates the importance of controlling for correlation between gene-level test statistics.
Tests which assume independence among the statistics that quantify the association
between genes and PCs, such as a two-sample t-test, Fisher’s exact test or a gene permu-
tation test, will underestimate the variance of the gene set test statistic and will therefore
reject too many H0. This example also shows that the correlation-adjusted t-test can
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Fig. 3 Simulation results for standardized mean difference statistic, SDk . Boxplots showing the distribution of
PCGSE-computed enrichment p-values for the first 10 of 20 simulated gene sets relative to the first 2 PCs of
1000 datasets simulated according to the model described in Section “Benchmark PC gene set testing
method” of the main PCGSE manuscript and illustrated in Fig. 2 above. For all displayed results, PCGSE was
executed using the Fisher-transformed Pearson correlation coefficient between each genomic variable and
each PC as the gene-level test statistic with the standardized mean difference as the gene set test statistic.
Plots a, b and c display the distribution of enrichment p-values for the first 10 gene sets relative to the first PC
of all simulated data sets. In plots d, e and f, enrichment p-values computed relative to the second PC are
displayed. For plots a and d, the p-values were computed using a two-sided t-test on SDk , for plots b and e,

the p-values were computed using a two-sided t-test on SD,adjk and, for plots c and f, the p-values were
computed using a two-sided permutation test on SDk . For PC 1 and gene set 2, the type I error rate at a
nominal α of 0.05 was 0.382 for the unadjusted t-test, 0.057 for the correlation-adjusted t-test and 0.05 for
sample permutation of SDk . For PC 2 and gene set 1, the type I error rate at a nominal α of 0.05 was 0.257 for
the t-test, 0.016 for the correlation-adjusted t-test and 0.014 for sample permutation test

achieve enrichment sensitivity and specificity comparable to a sample permutation test
with a lower computational burden.

Yeast cell cycle gene expression example

The Spellman et al. [39] α factor-synchronized gene expression data was selected for
PCGSE analysis because it is easily accessible, has been widely reanalyzed and has a
spectra with a published biological interpretation. In particular, the reanalysis by Alter
et al. [5] was one of the first to illustrate that the spectra of gene expression data can
represent important biological features, in this case phases of the yeast cell cycle. In
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Alter et al., the authors provided a qualitative interpretation of the first two eigengenes
in terms of the yeast cell cycle by examining the correlation between the eigengenes and
genes known to be active during different cell cycle phases, as defined by Spellman et al.
Alter et al. concluded that the first eigengene was correlated with genes that peak late in
cell cycle phase G1 and early in phase S and was anticorrelated with genes that peak late
in cell cycle phase G2/M and early in phase M/G1. Alter et al. also concluded that the
second eigengene was correlated with genes that peak late in cell cycle phase M/G1 and
early in phase G1 and was anticorrelated with genes that peak late in phase S and early in
phase S/G2.
Table 1 contains p-values representing the statistical significance of the association

between each of the Spellman et al. [39] yeast cell cycle gene sets and the first two PCs
of a specially processed version of the Spellman et al. gene expression data. As described
in Section “Evaluation using Spellman et al. α factor-synchronized yeast gene expression
data and yeast cell cycle gene sets”, this special processing ensured that the PCs were
identical to the eigengenes analyzed in Alter et al. [5]. When a two-sided t-test was used
to determine the statistical significance of the SDk gene set statistic, the gene sets corre-
sponding to cell cyclesG1, S andG2/M were highly significantly associated with PC 1 and
the gene sets corresponding to M/G1, G1, S and S/G2 were significantly associated with
PC 2. However, when either a two-sided t-test was used to compute the significance of
SD,adjk or a two-sided permutation test was used to determine the statistical significance
of SDk , PC 1 only had a significant association with the gene set corresponding to phase
G1 (with a marginally significant association with phase G2/M) and none of the cell cycle
gene sets were significant for PC 2.
Comparing the output from PCGSE with the analysis in Alter et al. [5], the results

from the two-sided t-test align closely with the qualitative conclusions of Alter et al.
The output from the correlation-adjusted t-test and permutation test, although gener-
ally in agreement for PC 1, are in direct contrast with Alter et al. regarding PC 2, finding
no cell cycle association. The agreement between Alter et al. and the t-test results is
expected since the authors had based their analysis simply on a qualitative inspection
of the gene-level correlations without a more formal test of a gene set test statistic. The
fact that the PCGSE methods which account for inter-gene correlation failed to find an
association between PC 2 and the cell cycle gene sets indicates that the published associ-
ation in Alter et al. may well have been a false positive due to either the high inter-gene

Table 1 Yeast cell cycle results. PCGSE computed enrichment p-values for the Spellman et al. [39]
yeast cell cycle gene sets relative to the first two PCs of the Spellman et al. α factor-synchronized gene
expression data processed using the steps outlined in Alter et al. [5]. PCGSE was executed using Fisher
transformed Pearson correlation coefficients between genes and PCs as gene-level test statistics

T-test Cor-adj t-test Perm

PC 1 PC 2 PC 1 PC 2 PC 1 PC 2

M/G1 0.68 1.2e-12 0.94 0.18 0.94 0.22

G1 3.5e-130 1e-35 0.023 0.23 0.024 0.35

S 1e-10 0.0074 0.2 0.59 0.2 0.62

S/G2 0.27 4.6e-06 0.86 0.45 0.87 0.47

G2/M 8.3e-38 0.068 0.07 0.79 0.048 0.81

Significance of the SDk gene set statistic was computed using either a two-sided t-test, a correlation-adjusted two-sided t-test or a
two-sided permutation test
Unadjusted p-values less than 0.05 are displayed in bold



Frost et al. BioDataMining  (2015) 8:25 Page 14 of 18

correlation present among the members of these sets or the selective examination by
Alter et al. on a subset of the genes in each of the cell cycle gene set with a common direc-
tion of association with the eigengene. In the later case, it is likely that a gene set statistic
such as the maxmean [36] would identify significant cell cycle enrichment for the second
eigengene.
This example highlights the importance of using formal statistical methods for gene set

testing when attempting to interpret the PCs of genomic data in terms of gene sets. Such
gene set testing methods must specifically account for the correlation between gene-level
test statistics.

Leukemia gene expression example

The classic Armstrong et al. [40] leukemia gene expression dataset is another excellent
example of a case where the genomic patterns associated with an interesting phenotype
have a clear representation in the spectral structure of the data. For the Armstrong et
al. data, the second PC of the gene expression data is strongly associated with the AML
versus ALL status of the subjects. Use of the Armstrong et al. gene expression data and
MSigDB C2 v4.0 gene sets for evaluation of PCGSE was also motivated by the exten-
sive use of this dataset and gene set collection in the gene set enrichment literature
(e.g., Subramanian et al. [35]) and easy accessibility from the MSigDB repository, factors
that will facilitate interpretation and replication of the reported PCGSE results by other
researchers.
Figure 4 shows the association between phenotype and PC gene set enrichment p-

values for the MSigDB C2 v4.0 gene sets, the AML versus ALL phenotype and the first
three PCs of the Armstrong et al. leukemia gene expression data. Each of the columns
in the multi-plot corresponds to results for one PC and each row corresponds to one of
the three different statistical tests supported by PCGSE on the SDk gene set statistic (i.e.,
t-test, correlation-adjusted t-test and permutation test). The association between PC 2
and the AML versus ALL phenotype can be clearly seen in Fig. 4 plots (b), (e) and (h). For
all three PCGSE methods, the PC enrichment p-values for the MSigDB C2 v4.0 gene sets
are highly correlated with the enrichment p-values computed for these gene sets relative
to the AML versus ALL phenotype.
Similar to the PCGSE results outlined in previous sections on simulated data and yeast

gene expression data, the unadjusted two-sided t-test on SDk generates PC gene set enrich-
ment p-values that are substantially lower than the enrichment p-values output by either
the t-test on SD,adjk or the permutation test on SDk . Although the true enrichment status
of the MSigDB C2 v4.0 gene sets relative to the PCs of the Armstrong et al. [40] gene
expression data is unknown, the phenotype enrichment results can be used as a proxy
for the true gene set association with PC 2 under the assumption that this PC captures
the AML versus ALL signal. If gene sets with a phenotype enrichment significance at
or below 0.1 are considered AML/ALL markers, the PCGSE method is able to correctly
identify these gene sets via enrichment relative to PC 2 with an area under the receiver
operator characteristic curve (AUC) of 0.82 for the t-test results displayed in plot (b),
an AUC of 0.88 for the correlation-adjusted t-test results displayed in plot (e) and an
AUC of 0.83 for the permutation test results displayed in plot (h). Considering identifica-
tion of AML/ALL-associated gene sets via PC enrichment using just α = 0.1, the PCGSE
method has a positive predictive value of 0.4 for the t-test results displayed in plot (b), 0.85
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Fig. 4 Leukemia gene expression results. Scatter plots showing the association between phenotype gene set
enrichment p-values and PC gene set enrichment p-values for the Armstrong et al. [40] leukemia gene
expression data, AML/ALL phenotype, MSigDB C2 v4.0 gene sets and first three PCs. Both phenotype and PC
gene set enrichment p-values were computed as outlined in Section “Evaluation using MSigDB C2 v4.0 gene
sets and Armstrong et al. leukemia gene expression data”. Shown in each plot is the Spearman correlation
coefficient between phenotype and PC gene set enrichment p-values and the positive predictive value of PC
gene set enrichment for identifying gene sets that are significantly enriched relative to the phenotype at an
α = 0.1 (shown by dotted lines). True positives are in the upper right quadrant, false positives are in the upper
left quadrant. Plots a-c show the association between phenotype and PC gene set enrichment p-values for
PCs 1 through 3 with the PC enrichment p-values computed using a two-sided t-test on the standardized
mean difference gene set statistic. For plots d-f, the PC gene set enrichment p-values were computed using
a correlation-adjusted two-sided t-test and, for plots g-i, the PC gene set enrichment p-values were
computed using the permutation distribution of the gene set statistic

for the correlation-adjusted t-test results displayed in plot (e) and 0.51 for the permutation
test results displayed in plot (h).
PCGSE analysis of the MSigDB C2 v4.0 gene sets and Armstrong et al. leukemia

gene expression data illustrates the biological motivation for PC gene set enrichment
and demonstrates the superior performance of the computationally efficient correlation-
adjusted t-test relative to either an unadjusted t-test or permutation test.

Conclusion
Although PCA is widely used for the dimensional reduction of biomedical data, with
applications in visualization, clustering and regression, interpretation of PCA-based
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models remains challenging. While rotation methods and sparse PCA techniques can
generate approximate PCs with few non-zero loadings that support interpretation in
terms of individual variables, these approaches will perform poorly on genomic data in
which important biological signals are defined by the collective action of groups of func-
tionally related genes. Although gene set testing methods have been widely applied in
supervised settings to analyze the association between gene sets and clinical phenotypes,
such variable group testing methods have seen little application in unsupervised contexts
to test the association between gene sets and the spectra of genomic data. To address the
challenge of gene set-based interpretation of the PCs of genomic data, we have developed
the principal component gene set enrichment (PCGSE) method, available as an R package
from CRAN. PCGSE performs a two-stage competitive gene set test with the correla-
tion between each gene and each PC as the gene-level test statistic and with the flexible
choice of both the gene set test statistic and the method used to compute the null dis-
tribution of the gene set statistic. On both simulated gene sets with simulated data and
on curated gene sets with real gene expression data, a computationally efficient version
of the PCGSE method based on a correlation-adjusted t-test has been shown to accu-
rately compute the statistical association between gene sets and the PCs of genomic data.
Methods for combining the results from PCGSE tests on multiple PCs will be explored in
future work.

Availability of supporting data
The MSigDB C2 v4.0 gene sets can be downloaded from http://www.broadinstitute.org/
gsea/msigdb/collections.jsp. The Armstrong et al. [40] leukemia gene expression data
can be downloaded from http://www.broadinstitute.org/gsea/datasets.jsp. The Spellman
et al. [39] yeast cell cycle data can be downloaded from http://genome-www.stanford.
edu/SVD/htmls/pnas.html. An implementation of the PCGSE algorithm is available in
the PCGSE R package (http://cran.r-project.org/web/packages/PCGSE/index.html). Due
to the dependency on the Bioconductor package safe, it is recommended that PCGSE be
installed using the biocLite() function. At the R prompt, enter:
source("http://bioconductor.org/biocLite.R") biocLite("PCGSE")
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Additional file 1: Supplementary figures for simulation and cell cycle examples. (PDF 698 kb)
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