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Abstract

Background: Host genetic variability has been implicated in chemotherapy-induced
peripheral neuropathy (CIPN). A dose-limiting toxicity for chemotherapy agents, CIPN
is also a debilitating condition that may progress to chronic neuropathic pain. We
utilized a bioinformatics approach, which captures the complexity of intracellular and
intercellular interactions, to identify genes for CIPN.

Methods: Using genes pooled from the literature as a starting point, we used
Ingenuity Pathway Analysis (IPA) to generate gene networks for CIPN.

Results: We performed IPA core analysis for genes associated with platinum-,
taxane- and platinum-taxane–induced neuropathy. We found that IL6, TNF, CXCL8,
IL1B and ERK1/2 were the top genes in terms of the number of connections in
platinum-induced neuropathy and TP53, MYC, PARP1, P38 MAPK and TNF for
combined taxane-platinum–induced neuropathy.

Conclusion: Neurotoxicity is common in cancer patients treated with platinum
compounds and anti-microtubule agents and CIPN is one of the debilitating
sequela. The bioinformatic approach helped identify genes associated with CIPN
in cancer patients.
Introduction
Chemotherapy-induced peripheral neuropathy (CIPN) is a debilitating condition. CIPN is

a dose-limiting toxicity for chemotherapy agents, such as oxaliplatin, cisplatin, and plat-

inum [1–4]. Chemotherapeutic agents may cause structural damage to peripheral nerves,

which can result in aberrant somatosensory processing by the peripheral and/or central

nervous system. The symptoms of CIPN vary depending on the type of chemotherapy ad-

ministered and which nerve fibers are affected. Unusual sensations (paresthesia), numb-

ness, balance problems or pain may result from chemotherapies that affect the sensory

nerve fibers. When motor nerves are affected, patients may report weakness of the mus-

cles in the feet and hands.

Patients who suffer from CIPN have a higher risk (as much as threefold higher) of

developing neuropathic pain (NP) [5]. Defined as “pain initiated or caused by primary

lesion or dysfunction in the nervous system,” NP occurs in nearly 40 % of patients who

experience cancer pain [6, 7]. Patients with NP experience higher pain intensity and

less effective control of their pain with conventional analgesia [8]. Further, patients

with NP rate their level of pain relief to be significantly lower than those with nocicep-

tive pain (defined as pain caused by activation of primary afferents in somatic or
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visceral tissues) in response to a single dose of an opioid [8, 9]. Patients with NP

report twice as many visits to their health care provider (p = 0.02) and take

more prescription (50 % versus 19 %; p = 0.001) and over-the-counter medications

(62.5 % versus 45 %; p = 0.08) for pain than those without NP [5].

Published guidelines for the initial treatment of NP include the use of gabapentin,

pregabalin, carbamazepine, tricyclic antidepressants, oxycodone, morphine, methadone,

tramadol, duloxetine, and venlafaxine [10, 11]. However, placebo-controlled trials have

shown that medications such as gabapentin [12] and glutamine [13] have no statistically

significant effects on NP. Animal and human studies have been conducted to identify

the best ways to treat and manage NP [14–20]. Because CIPN is a risk factor for the

development of NP in cancer patients, a better understanding of the potential biological

mechanisms underlying CIPN has huge clinical significance.

Host genetic variability has been implicated in many pain conditions, including neur-

opathy. Each of these studies assessed different therapeutic agents and different genetic

mechanisms. However, it is understood that as a complex trait, several genes are impli-

cated in CIPN. Bioinformatics provides tools for using large-scale information to pro-

duce comprehensive networks of genes and the underlying biological pathways

implicated in a phenotype. Therefore, in this study, we used the Ingenuity Pathway

Analysis (IPA), a bioinformatic tool for analyzing biological data, and performed a com-

prehensive network-based approach to identify genes implicated in neuropathy induced

by chemotherapy agents. Compared to traditional regression approaches, network-

based approaches can provide a holistic picture that captures the complexity of intra-

cellular and intercellular interactions in diseases [21]. Furthermore, the network-based

approaches can identify genes and pathways related to a disease or phenotype, which

will lead to a better understanding of the underlying biological mechanisms [22]. Fur-

ther, networks generated from IPA core analysis may suggest new candidate genes for

future studies of CIPN.
Methods
With the goal of identifying a comprehensive list of genes and potentially novel genes

associated with CIPN, we first conducted a literature search as described below. Using

genes pooled from the literature as a starting point, we used IPA to generate gene net-

works for CIPN.
Literature review

Using the PubMed database, we performed a comprehensive literature review, limiting

our search to human studies and articles published in English before July 2014. The pri-

mary purpose of the literature search was to identify genes associated with CIPN in cancer

patients. The terms we used were “cancer neuropathy SNP,” “cancer neuropathy SNPs,”

“cancer neuropathy gene,” “cancer neuropathy genes,” “cancer neurotoxicity SNP,” “cancer

neurotoxicity SNPs,” “cancer neurotoxicity gene” and “cancer neurotoxicity genes.” We

then screened the resulting articles based on the title, abstract, and the full text, and ex-

cluded duplicate articles. Next, we manually searched the reference lists of the articles

identified in our initial search and those in related review articles to identify additional

relevant articles (Table 1). From these studies, we retrieved the information about genes



Table 1 Number of articles obtained using different search terms

Search terms # of articles by PubMed
search

# of articles by initial
screen

# of articles from
references

# of articles
included

cancer neuropathy
SNPs(SNP)

30 20 36 56

cancer neuropathy
genes(gene)

266 1 0 1

cancer neurotoxicity
SNPs(SNP)

37 6 0 6

cancer neurotoxicity
genes(gene)

349 1 0 1

Total 682 28 36 64
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harboring or close to the significantly associated genetic variants (SNPs or haplotypes)

and included those genes in the IPA. In particular, we included only those genes for IPA

analysis that (1) have been replicated in an independent study or meta-analysis, (2) have

at least one SNP that reached the genome-wide significance level, or (3) have a known

biological functional significance (e.g., multi-drug resistance, drug metabolism, and medi-

ating developmental events in the nervous system). We also summarized the information

based on the different chemotherapy agents used for cancer patients.
Ingenuity pathway analysis

IPA (Ingenuity® Systems, www.ingenuity.com) is a software that connects a list of mole-

cules in a set of networks based on the scientific information contained in the Ingenu-

ity Knowledge Base of biological interactions and functional annotations from millions

of relationships between proteins, genes, complexes, cells, tissues, drugs, and diseases

[23, 21]. In the networks, nodes are used to represent molecules (e.g., genes, chemicals,

protein families, complexes, microRNA species and biological processes) [24] and lines

connecting two molecules are used to represent the relationship between them. Many

different types of relationships are considered in the IPA analyses, including activation,

binding, causation, chemical-chemical interaction, expression enzyme catalysis, inhib-

ition, biochemical modification, protein-protein binding and transcription.

In this study, we utilized the IPA core analysis function to generate relevant networks

that identify additional genes that interact with the genes identified from the literature

review (denoted as focus genes in IPA). The IPA core analysis function is a process to

create networks on the basis of the focus genes [25]. The working hypothesis for net-

work generation is that the biological function involves locally dense interactions; thus,

IPA uses an algorithm to attempt to generate networks that are as densely connected

as possible [26]. The network generation process first ranks the focus genes in decreas-

ing order on the basis of triangular connectivity, which measures the number of tri-

angular connections in which a gene functions (or pairs of genes to which a gene is

connected). The most connected focus gene (the top ranked gene) is considered to be

the starting seed gene. Next, the remaining focus genes that are in the neighborhood of

the starting seed gene are added to generate the first seed gene network. A neighbor-

hood is defined as a gene plus the genes exactly one connection away from that gene.

Then the second seed gene network is identified from the focus genes that are not in-

cluded in the first seed gene network. The process continues until all focus genes are

http://www.ingenuity.com/
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represented in a relevant network. Subsequently, all smaller networks are combined to

make larger networks by connecting seed gene networks through an additional non-

focus gene. If the gene network does not reach the maximum network size (140 genes

in this study), IPA will then connect additional genes/networks from its database to any

of the genes involved in the gene network. Specifically, given a network, to identify add-

itional genes to be added, IPA gives priority to the genes that have the largest overlap

with the existing network and have the least number of neighbors. This property is

measured using a metric called specific connectivity, which is calculated by divid-

ing the number of genes in the intersection of the neighborhood and the existing

network by the union of the number of genes in the neighborhood and the exist-

ing network. The gene with the highest specific connectivity score is included in

the existing network. Importantly, the IPA analysis can exclude a focus gene from

the resulting network if such a gene is less likely to have connections (i.e., bio-

logical relationships) with the network.

The resulting functions/pathways/networks are evaluated using the right-tailed Fish-

er’s exact test, which provides p values based on the null hypothesis that the association

between a set of focus genes and a given function/pathway/network is due to random

chance [25]. Specifically, if the final network includes n genes and nf of them are focus

genes, the p value is the probability of finding nf or more focus genes in a set of n genes

randomly selected from the IPA pre-specified database [26]. A score, which is assessed

as -log10(p value), is used to rank the resulting functions/pathways/networks. We used

a significance level of <10−5 in our study (score > 5) when selecting networks [21].

We limited the IPA analysis to human studies. In the IPA core analysis, we used the

Ingenuity Knowledge Base as the reference set. In order to generate networks in the

core analysis, we used the settings of a maximum of 140 genes per network and 25 net-

works per analysis, because the networks for up to 140 genes allow for the possibility

that the same network can include all focus genes [27]. We reported the most intercon-

nected genes in the networks as the key genes of interest, because highly connected

molecules (called hubs) are typically associated with biological functions or diseases

[22, 24, 21, 26, 27].
Results
Literature review

From our search of the PubMed database, we initially identified 682 articles. After

screening the title, abstract and full text, we excluded 654 articles for the following rea-

sons (Table 1): (1) not human studies; (2) not published in English; (3) meta-analysis

study, review or letter to the editor; (4) clinical trial studies; (5) not genetic association

studies; (6) not neuropathy-related phenotypes studies; (7) not cancer studies; and (8)

duplicate articles from different searches. We then manually searched the reference

lists from the resulting 28 articles and from related review articles about genetic neur-

opathy studies, and identified 36 more articles. As a result, we had a total of 64 articles

from which we extracted information to identify the focus genes and perform the ana-

lyses through IPA.

Table 2 lists the information we retrieved from each of the studies, including the year

of publication, first author, ethnicity of patient population, cancer type, sample size,



Table 2 List of genetic association studies for chemotherapy-induced neuropathy in cancer
patients, sorted by publication year and name of first author

Year First author Ethnicity Cancer type Sample
size

Phenotype Significant genes

2003 Aplenc R [41] W, AA,
H

Acute
lymphoblastic
leukemia

533 Peripheral
neuropathy

CYP3A4, CYP3A5

2004 Isla D [42] W Lung 62 Docetaxel-cisplatin-
treated neurological

None

2006 Lecomte T [43] W Gastrointestinal
solid tumors

64 Oxaliplatin-related
cumulative
neuropathy

GSTP1

2006 Sissung TM [44] W N/A 26 Paclitaxel-induced
neuropathy

ABCB1

2007 Gamelin L [45] W Colon, rectum 145 Oxaliplatin-induced
neurotoxicity

AGXT

2007 Marsh S [46] N/A Ovarian 914 Paclitaxel/docetaxel-
induced neuropathy

None

2007 Oldenburg J [47] W Testicular 238 Self-reported
chemotherapy-
induced long-term
toxicities

GSTP1

2007 Ruzzo A [48] W Colorectal 166 Oxaliplatin-induced
neurotoxicity

GSTP1

2008 Keam B [49] A Gastric 73 Peripheral sensory
neuropathy

None

2008 Pare L [50] W Colorectal 126 Cumulative
oxaliplatin-induced
neuropathy

None

2008 Sissung TM [51] N/A Prostate 73 Docetaxel-induced
neuropathy

ABCB1

2009 Argyriou AA [52] W Colorectal 62 Oxaliplatin-induced
peripheral
neuropathy

None

2009 Goekkurt E [53] W Gastric 134 Neurotoxicity GSTP1

2009 Green H [54] W Ovarian 38 Sensory/motor
neuropathy

None

2009 Kim HS [55] A Epithelial ovarian 118 Taxane/platinum-
induced
neurotoxicity

ERCC1

2009 Kweekel DM [56] W Colorectal 91 Neurotoxicity None

2009 Mir O [57] W Breast, lung,
prostate

58 Docetaxel(Taxotere)-
induced peripheral
neuropathy

GSTP1

2009 Seo BG [58] A Gastric 94 Neuropathy None

2010 Antonacopoulou
AG [59]

W Colorectal 55 Chronic oxaliplatin-
induced peripheral
neuropathy

ITGB3

2010 Boige V [60] W Colorectal 349 FOLFOX-induced
severe neurologic
toxicity

None

2010 Chen YC [61] A Colorectal 166 Oxaliplatin-induced
chronic cumulative
neuropathy

GSTP1

2010 Cho HJ [62] A Diffuse large B-
cell lymphoma

94 Chemotherapy-
related
neurotoxicity

None
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Table 2 List of genetic association studies for chemotherapy-induced neuropathy in cancer
patients, sorted by publication year and name of first author (Continued)

2010 Inada M [63] A Colorectal 51 Oxaliplatin-induced
peripheral
neuropathy

ERCC1, GSTP1

2010 Kanai M [64] A Colorectal 82 Early-onset
oxaliplatin-induced
neuropathy

None

2010 Khrunin AV [65] W Ovarian 104 Cisplatin-based
neuropathy

GSTM1, GSTM3

2010 Li QF [66] A Gastric 92 Neurological
toxicity

GSTP1

2010 McLeod HL [67] W, A,
AA, H

Metastatic
colorectal

520 Diarrhea, vomiting,
paresthesia, febrile
neutropenia and
neutropenia

GSTP1

2010 Ofverholm A [68] W Breast, ovarian 36 Occurrence and
degree of
neurotoxicity

None

2010 Rizzo R [69] W Breast 95 Taxane-induced
hypersensitivity and
sensory neuropathy

None

2011 Basso M [70] W Colorectal,
pancreatic, bile
ducts

40 Acute oxaliplatin
neurotoxicity

SK3

2011 Bergmann TK
[71]

W Ovarian 119 Sensory neuropathy None

2011 Bergmann TK
[72]

W Ovarian 92 Sensory neuropathy None

2011 Broyl A [73] W Multiple
myeloma

369 Bortezomib/
vincristine-induced
peripheral
neuropathy

RHOBTB2, CPT1C,
SOX8, caspase 9,
ALOX12, IGF1R,
SOD2, MYO5A,
MBL2, PPARD,
ERCC4, ERCC3,
AURKA, MKI67,
GLI1, DPYD, ABCC1

2011 Cibeira MT [74] W Multiple
myeloma

28 Thalidomide-
induced peripheral
neuropathy

GSTT1

2011 Corthals SL [75] W Multiple
myeloma

238 Bortezomib induced
peripheral
neuropathy

CYP17A1

2011 Favis R [76] W Myeloma 139 Bortezomib-induced
peripheral
neuropathy

CTLA4, PSMB1,
CTSS, GJE1,
DYNC1I1, TCF4

2011 Hong J [77] A Colorectal 52 Sensory neuropathy GSTP1

2011 Johnson DC [78] W Multiple
myeloma

1495 Thalidomide-related
peripheral
neuropathy

ABCA1, ICAM1,
PPARD, SERPINB2,
SLC12A6

2011 Leskela S [79] W Lung, breast,
ovary, uterus,
head and neck

118 Neurotoxicity CYP2C8, CYP3A5

2011 Sucheston LE
[80]

W, AA Breast 888 Taxane-induced
neurotoxicity

FANCD2

2012 Baldwin RM [81] W, AA,
A

Breast 855 Paclitaxel induced
peripheral sensory
neuropathy

FGD4, FZD3, EPHA5
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Table 2 List of genetic association studies for chemotherapy-induced neuropathy in cancer
patients, sorted by publication year and name of first author (Continued)

2012 Braunagel D [82] W Acute myeloid
leukemia

360 Cytarabine-induced
neurotoxicity

NME1

2012 Fung C [83] W, A,
AA, H

Testicular
germ cell
tumor

137 Cisplatin-induced
neurotoxicity,
peripheral
neuropathy

None

2012 Hasmats J [84] W Ovarian, lung,
carcinoma in
uteri/
peritoneal/
breast

94 Paclitaxel/
carboplatin-induced
neuropathy

ABCA1

2012 Hertz DL [85] W, AA Breast 111 Peripheral
neuropathy

CYP2C8

2012 Leandro-Garcia
LJ [86]

W Ovary, lung,
breast

214 Paclitaxel-induced
peripheral
neuropathy

TUBB2A

2012 Won HH [87] A Colon 96 Severe oxaliplatin-
induced chronic
peripheral
neuropathy

TAC1, FOXC1, GMDS,
ITGA1, PELO, ACYP2,
TSPYL6, DLEU7, BTG4,
POU2AF1, CAMK2N1,
FARS2, LYRM4

2013 Argyriou AA [88] W Colorectal 200 Oxaliplatin-induced
peripheral
neuropathy

SCN4A, SCN10A

2013 Bergmann TK
[89]

W Ovarian 241 Paclitaxel induced
neuropathy

None

2013 Cecchin E [90] W Colorectal 144 Oxaliplatin
neurotoxicity

ABCC1, ABCC2

2013 de Graan AJ [91] W Esophagus,
ovary, cervix,
endometrial,
breast, lung,
head/neck

261 Paclitaxel-induced
neurotoxicity

CYP3A4

2013 Hertz DL [92] W, AA Breast 209 Paclitaxel-induced
neuropathy

CYP2C8

2013 Kumamoto K [93] A Colorectal 63 Oxaliplatin-induced
sensory peripheral
neuropathy

GSTP1, GSTM1

2013 Leandro-Garcia
LJ [94]

W Ovary,
fallopian tube,
peritoneum,
lung, uterus,
breast

144 Paclitaxel induced
peripheral sensory
neuropathy

EPHA4, EPHA6,
EPHA5, XKR4,
LIMK2

2013 Lee KH [95] A Colon 292 Sensory neuropathy XRCC1

2013 Liu YP [96] A Gastric 126 Oxaliplatin-induced
neurotoxicity

GSTP1

2013 McWhinney-Glass
S [97]

N/A Ovarian 404 Platinum/taxane-
induced
neurotoxicity

SOX10, BCL2,
OPRM1, TRPV1

2013 Oguri T [98] A Colorectal 70 Oxaliplatin-induced
chronic peripheral
neurotoxicity

ACYP2, FARS2,
ERCC1, TAC1

2014 Abraham JE [99] W Breast 1303 Taxane-related
sensory neuropathy

ABCB1, TUBB2A,
CYP2C8, ABCC2,
CYP1B1, KIAA0146-PRKD,
SLCO1B1, EPHA6

2014 Bhojwani D [100] N/A 369 ASTN2, PXDC1, IYD
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Table 2 List of genetic association studies for chemotherapy-induced neuropathy in cancer
patients, sorted by publication year and name of first author (Continued)

Acute
lymphoblastic
leukemia

Methotrexate-
induced
neurotoxicity

2014 Custodio A [101] W Colon 206 Oxaliplatin-induced
peripheral
neuropathy

CCNH, ABCG2

2014 Hertz DL [102] W, AA,
A

Breast 412 Paclitaxel-induced
peripheral
neuropathy

CYP2C8, ABCG1

2014 Khrunin AV [103] W Ovarian 104 Cisplatin-based
neurotoxicity

None

2014 Lee SY [104] A Breast 85 Paclitaxel and
gemcitabine
combination
chemotherapy
neurotoxicity

RRM1

W: White; A: Asian; AA: African American; H: Hispanic
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phenotypes, and significant genes. These studies included different cancer sites and

patients of different ethnic groups. Neuropathy (or neurotoxicity) in cancer patients

is usually induced by the chemotherapy agents used in cancer treatment, such as

oxaliplatin, cisplatin, and platinum, and is usually measured according to the

National Cancer Institute’s Common Terminology Criteria for Adverse Events or

Common Toxicity Criteria.

In Table 3, we summarize the focus genes from the literature review with respect to

neuropathy induced by different chemotherapy agents, including platinum, taxane, plat-

inum/taxane, Bortezomib, bortezomib/vincristine, thalidomide, methotrexate, cytara-

bine, platinum/fluorouracil, platinum/S-1 (i.e., oral fluoropyrimidine consists of tegafur,

5-chloro-2,4 dihydroxypyrimidine, and potassium oxonate), taxane/gemcitabine, plat-

inum/fluorouracil/leucovorin, platinum/fluorouracil/irinotecan, prednisone/vincristine/

methotrexate, platinum/capecitabine, platinum/fluorouracil/irinotecan/leucovorin and

rituximab/cyclophosphamide/doxorubicin/vincristine/prednisone. Among the different

(or combined) chemotherapy agents, those studied most frequently in relation to drug-

induced neuropathy were platinum, taxane and the combination of platinum/taxane,

for which our literature search respectively produced 21, 19 and 5 related papers.

Among the focus genes reported in the articles, GSTP1, CYP2C8 and ABCB1 were stud-

ied the most frequently (Table 4). ABCC2 and GSTP1 were associated with both plat-

inum- and taxane-induced neuropathy; CYP2C8 was associated with both taxane- and

platinum/taxane-induced neuropathy; and ERCC1 was associated with platinum- and

platinum/taxane-induced neuropathy. Besides platinum-, taxane- and platinum/taxane-

induced neuropathy, neuropathy induced by other chemotherapy agents were not fre-

quently studied. Therefore, we focused on the genes associated with platinum-, taxane-

and platinum/taxane-induced neuropathy in our analyses.

IPA core analysis

We performed the IPA core analysis for the focus genes reported to be associated with

platinum-, taxane- and platinum/taxane- induced neuropathy. The significant networks

revealed from the IPA core analyses are shown in Figs. 1, 2 and 3 for the focus genes



Table 3 Summary of genes associated with chemotherapy agent-specified neuropathy from the
literature review. Number of papers for each agent-specified neuropathy, number of genes
associated with each agent-specified neuropathy and number of agent-specified neuropathies
associated with each gene are shown. For the association between a gene and an agent-specified
neuropathy, the number of relating papers is listed

Agent P T P/T B B/V Th M Cyt P/F P/S T/G P/F/L P/
F/I

Pr/
V/M

P/C P/F/
I/L

R/Cyc/
D/V/Pr

Genes # of
papers

21 19 5 2 1 2 1 1 2 1 1 2 2 1 1 1 1

(IPA
symbols)

# of
genes

26 19 7 7 17 6 3 1 1 1 1 2 1 2 0 0 0

# of
agents

GSTP1 6 7 1 1 1 1 1

ERCC1 2 2 1

ACYP2 1 2

FARS2 1 2

GSTM1 1 2

TAC1 1 2

ABCC2 2 1 1

ABCC1 2 1

ABCG2 1 1

AGXT 1 1

BTG4 1 1

CAMK2N1 1 1

CCNH 1 1

DLEU7 1 1

FOXC1 1 1

GMDS 1 1

GSTM3 1 1

ITGA1 1 1

ITGB3 1 1

KCNN3 1 1

LYRM4 1 1

PELO 1 1

POU2AF1 1 1

SCN10A 1 1

SCN4A 1 1

TSPYL6 1 1

CYP2C8 2 5 1

ABCB1 1 3

EPHA5 1 2

EPHA6 1 2

TUBB2A 1 2

CYP3A4 2 1 1

CYP3A5 2 1 1

ABCG1 1 1
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Table 3 Summary of genes associated with chemotherapy agent-specified neuropathy from the
literature review. Number of papers for each agent-specified neuropathy, number of genes
associated with each agent-specified neuropathy and number of agent-specified neuropathies
associated with each gene are shown. For the association between a gene and an agent-specified
neuropathy, the number of relating papers is listed (Continued)

CYP1B1 1 1

EPHA4 1 1

FANCD2 1 1

FGD4 1 1

FZD3 1 1

LIMK2 1 1

SLCO1B1 1 1

SPIDR 1 1

XKR4 1 1

ABCA1 2 1 1

BCL2 1 1

OPRM1 1 1

SOX10 1 1

TRPV1 1 1

CTLA4 1

CTSS 1

CYP17A1 1

DYNC1I1 1

GJC3 1

PSMB1 1

TCF4 1

PPARD 2 1

ALOX12 1 1

AURKA 1 1

CASP9 1 1

CPT1C 1 1

DPYD 1 1

ERCC3 1 1

ERCC4 1 1

GLI1 1 1

IGF1R 1 1

MBL2 1 1

MKI67 1 1

MYO5A 1 1

RHOBTB2 1 1

SOD2 1 1

SOX8 1 1

GSTT1 1 1

ICAM1 1 1

SERPINB2 1 1

SLC12A6 1 1
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Table 3 Summary of genes associated with chemotherapy agent-specified neuropathy from the
literature review. Number of papers for each agent-specified neuropathy, number of genes
associated with each agent-specified neuropathy and number of agent-specified neuropathies
associated with each gene are shown. For the association between a gene and an agent-specified
neuropathy, the number of relating papers is listed (Continued)

ASTN2 1 1

IYD 1 1

PXDC1 1 1

NME1 1 1

RRM1 1 1

XRCC1 1 1

P: Platinum; T: Taxane; P/T: Platinum/Taxane; B: Bortezomib; B/V: Bortezomib/Vincristine; Th: Thalidomide; M:
Methotrexate; Cyt: Cytarabine; P/F: Platinum/Fluorouracil; P/S: Platinum/S-1; T/G: Taxane/Gemcitabine; P/F/L: Platinum/
Fluorouracil/Leucovorin; P/F/I: Platinum/Fluorouracil/Irinotecan; Pr/V/M: Prednisone/Vincristine/Methotrexate; P/C:
Platinum/Capecitabine; P/F/I/L: Platinum/Fluorouracil/Irinotecan/Leucovorin;
R/Cyc/D/V/Pr: Rituximab/Cyclophosphamide/Doxorubicin/Vincristine/Prednisone

Table 4 Focus genes* associated with platinum-, taxane-, and platinum/taxane- induced
neuropathy, as identified through the literature review

Platinum-induced neuropathy Taxane-induced neuropathy Platinum/Taxane-induced neuropathy

ABCC1 ABCB1 ABCA1

ABCC2 ABCC2 BCL2

ABCG2 ABCG1 CYP2C8

ACYP2 CYP1B1 ERCC1

AGXT CYP2C8 OPRM1

BTG4 CYP3A4 SOX10

CAMK2N1 CYP3A5 TRPV1

CCNH EPHA4

DLEU7 EPHA5

ERCC1 EPHA6

FARS2 FANCD2

FOXC1 FGD4

GMDS FZD3

GSTM1 GSTP1

GSTM3 LIMK2

GSTP1 SLCO1B1

ITGA1 SPIDR

ITGB3 TUBB2A

KCNN3 XKR4

LYRM4

PELO

POU2AF1

SCN10A

SCN4A

TAC1

TSPYL6

*Genes shown to be significant based on the literature
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Fig. 1 The most significant network (p value = 10−12) generated by IPA core analysis for 26 focus genes
associated with platinum-induced neuropathy. Green: focus genes; red: genes with at least 15 connections;
yellow: focus genes with at least 15 connections. Dashed and solid lines represent indirect and direct
interactions, respectively
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reported to be associated with platinum-, taxane- and platinum/taxane- induced neur-

opathy, respectively. In the networks, the solid and dashed edges or arrows indicate direct

and indirect interactions, respectively. In Table 5, we report the genes that had at least 15

connections (i.e., hubs, suggesting biological importance) in the networks, ranked by the

number of connections for each gene.

Platinum-induced neuropathy

The IPA core analysis revealed six networks associated with platinum-induced neur-

opathy. Using a nominal significance level of 10−5, of the 6 networks, we found only one

network to be significant (p value of 10−12; Fig. 1. We note that 66 genes (one focus gene

and 65 “novel” genes) out of 121 genes in the network have at least 15 connections

(Table 5), suggesting the potential biological importance of these genes in CIPN associated

with platinum-based chemotherapy. The gene ITGB3 was the only focus gene in the net-

work, and the top 5 “novel” genes were IL6,TNF, CXCL8, IL1B and ERK1/2.

Taxane-induced neuropathy

The IPA core analysis for taxane-induced neuropathy revealed eight networks, two of

which were significant, with p values of 10−9 and 10−8 (Fig. 2). There is no hub in the



a

b

Fig. 2 The most significant networks (p values = 10−9 and 10−8) generated by IPA core analysis for 19 focus
genes associated with taxane-induced neuropathy. Green: focus genes. Dashed and solid lines represent
indirect and direct interactions, respectively. a network 1 (p values = 10−9). b network 2 (p values = 10−8)
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network generated by the IPA core analysis of the focus genes reported to be associated

with taxane-induced neuropathy.
Platinum/taxane-induced neuropathy

The IPA core analysis for platinum/taxane-induced neuropathy identified three net-

works, one of which was significant, with a p value of 10−8 (Fig. 3). We note that 6



Fig. 3 The most significant network (p value = 10−8) generated by IPA core analysis for 7 focus genes
associated with platinum/taxane-induced neuropathy. Green: focus genes; red: genes with at least 15
connections; yellow: focus genes with at least 15 connections. Dashed and solid lines represent indirect
and direct interactions, respectively
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genes (one focus gene and 5 additional “novel” genes) out of 48 genes in the network

have at least 15 connections. The gene BCL2 is the only focus gene included in the net-

work that has more than 15 connections. The 5 additional genes that directly or indirectly

interact with the corresponding focus genes associated with platinum/taxane-induced

neuropathy based on the literature are TP53, MYC, PARP1, P38 MAPK and TNF.

Discussion
In this study, we performed a comprehensive literature review to identify genes impli-

cated in CIPN and then used IPA bioinformatic tools to conduct comprehensive path-

way and network analyses of the known genes identified in the literature. Neurotoxicity

is common in cancer patients who are treated with platinum compounds and anti-

microtubule agents, and the development of CIPN is a potentially debilitating sequela.

From the literature review, we found that neuropathy induced by platinum compounds

and taxanes (and a combination of these two agents) has been studied most frequently.

Neuropathy induced by chemotherapy agents other than platinum, taxane and plat-

inum/taxane combinations has not been adequately studied.

Among the focus genes identified from our literature search, GSTP1, CYP2C8 and

ABCB1 were most frequently assessed as candidates for CIPN. From the literature re-

view, we also found that the genomic variations of genes associated with neuropathy



Table 5 List of genes with at least 15 connections (i.e., hubs*) in the networks, ranked by the
number of connections for each gene

Platinum-induced CIPN Platinum/taxane-induced CIPN

IPA Symbol # of connections IPA Symbol # of connections

IL6 70 TP53 42

TNF 69 BCL2** 28

CXCL8 56 MYC 16

IL1B 55 PARP1 16

ERK1/2 54 P38 MAPK 15

VEGFA 52 TNF 15

MAPK1 51

NFkB (complex) 46

P38 MAPK 45

TGFB1 43

COL18A1 42

CCL2 39

IFNG 38

PTGS2 37

ERK 34

TP53 34

MAPK3 33

Akt 32

STAT3 30

CD3 29

JUN 29

PI3K (complex) 29

EGFR 28

MMP1 28

HGF 27

Jnk 27

CCL5 26

CD40 26

IL1A 26

ITGB1** 26

MMP2 25

Cg 24

FN1 24

RELA 24

TLR4 23

Vegf 23

CXCL10 22

EGF 21

ITGB3 21

MAPK14 21

NFKBIA 21
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Table 5 List of genes with at least 15 connections (i.e., hubs*) in the networks, ranked by the
number of connections for each gene (Continued)

SP1 21

STAT1 21

AKT1 20

HIF1A 20

SRC 20

TERT 20

Pkc(s) 19

CTNNB1 18

Focal adhesion kinase 18

FOS 18

HDAC1 18

IgG 18

ITGAV 18

NFKB1 18

CD44 17

FGF2 17

Lh 17

MAPK8 17

SYK 17

Ap1 16

CCND1 16

IGF1 16

PRKCD 16

TREM1 16

OSM 15

*Suggests biological importance
**Focus genes
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induced by platinum versus taxane compounds were different. For example, GSTP1,

ERCC1, ACYP2, FARS2, GSTM1 and TAC1 were found to be associated with platinum-

induced neuropathy in more than one study but were not associated with taxane-

induced neuropathy. On the other hand, CYP2C8, ABCB1, EPHA5, EPHA6 and

TUBB2A were found to be associated with taxane-induced neuropathy in more than

one study, but not to be associated with platinum-induced neuropathy (Table 3). The

overall theme is that these CIPN-associated genes are related to the networks that

regulate intracellular drug concentrations (e.g., GSTP1, GSTM1 and ABCB1), response

to DNA damage (e.g., ERCC1, FANCD2, BCL2, and SOX10), cellular stress response

pathways (e.g., BCL2), inflammation (e.g., ABCC1, ABCC2, ABCG2, ITGA1, ITGB3,

TAC1, ABCB1, ABCC2, EPHA4, EPHA6, SLCO1B1, TUBB2A, ABCA1, BCL2, OPRM1

and TRPV1), and neuronal plasticity (e.g., ERCC1 and TAC1).

We performed IPA core analysis for the genes associated with platinum-, taxane- and

platinum/taxane-induced neuropathy. We found that IL6, TNF, CXCL8, IL1B and ERK1/

2 were the top genes in terms of the number of connections in platinum-induced neur-

opathy, suggesting either direct or indirect interactions with nervous tissue leading to

CIPN after exposure to platinum compounds. It is particularly interesting that studies of
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pain in cancer patients have shown the importance of cytokine genes [28–37] including

IL6, TNF and IL1B polymorphisms. These studies hypothesized that cytokines associated

with inflammation or tissue damage modify the activity of nociceptors, which contributes

to pain hypersensitivity. Studies also suggest that hyperexcitability in pain transmission

neurons may also be caused by proinflammatory cytokines produced by glial cells that re-

spond to inflammation or other cancer-produced cytokines. Substance P and excitatory

amino acids released from presynaptic terminals result to an exaggerated pain response

[38, 39]. In patients with lung cancer, polymorphisms in TNF and IL6 were significantly

associated with pain severity (for TNF, GG = 4.12; GA = 5.38; AA = 5.50; p = 0.04)

and with morphine-equivalent daily dose (IL-6, GG = 69.61; GC = 93.6; CC = 181.67;

p = 0.004) [36]. An additive effect of mutant alleles in IL1B T-31C (odds ratio =

0.55, 95 % confidence interval = (0.31, 0.97)) was also found to be associated with

high intensity of pain, depressed mood and fatigue in lung cancer patients [31].

In addition to the top connections in the networks, the overall biological processes

involved in the networks help us to better understand the gene-phenotype association.

The IPA core analysis is a process for creating molecule networks on the basis of focus

genes, which are genes associated with the phenotypes of interest. Because all the focus

and non-focus genes in the network have inter-connected relationships, it provides a

list of novel candidate genes associated with the phenotype. The network also provides

a clearer picture of the (possibly interacting) genes that might be directly or indirectly

associated with chemotherapy-induced peripheral neuropathy. The most significant

network generated by IPA core analysis for the focus genes associated with platinum-

induced neuropathy (Fig. 1) contains genes for inflammation (multiple interleukins,

TNF, IFNG, STAT3, STAT1), DNA damage response (TP53) and cell survival (MAPK,

JUN, ERK, NFkB). Network 2, which relates to taxane-induced neuropathy (Fig. 2b), in-

cludes many genes that are involved in the DNA damage response. The network related

to neuropathy induced by combined platinum and taxane therapy (Fig. 3) resembles

Fig. 1 in terms of the cellular functions involved, i.e., inflammation, DNA damage re-

sponse and cell survival. The major commonality among Figs. 1, 2b and 3 is TP53,

which is a central hub in these three networks. Network 1, which relates to taxane-

induced neuropathy (Fig. 2a), primarily involves drug metabolizing enzymes and trans-

porter proteins that will affect the intracellular concentration of taxanes. These analyses

suggest that genetic variations in the DNA damage response are associated with the

risk of developing CIPN, and that taxane-induced neuropathy is also affected by genetic

variations that regulate intracellular drug levels while this aspect may not be important

for platinum compounds.

This bioinformatic approach to expanding gene networks and identifying connec-

tion hubs has limitations. First, many proteins do not interact, while others may con-

nect to major hubs that interact with hundreds of genes and proteins. Therefore, it is

believed that the degree of connectivity obeys a power law, which means that the net-

work is scale-free, a desired property. However, we found that the IPA metric/algo-

rithm that generates networks does not guarantee that the resulting networks are

scale-free, even though the networks may exhibit certain scale-free behavior in which

the major hubs are closely followed by smaller ones that have less connectivity, and

the smaller hubs are then followed by other nodes with an even smaller degree of

connectivity, and so on (see Figs. 1 and 3). Furthermore, the IPA algorithm that
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generates networks will not continue if the network reaches the pre-specified max-

imum network size (i.e., 140 genes), which might rule out many nodes with small de-

grees of connectivity and impact the scale-free behavior. We employed a widely used

log-log plot to investigate whether the networks in Figs. 1 and 3 follow the power law

[24, 40]. The log-log plot should appear as a decaying straight line if the network obeys the

power law, which was not observed in our plot. Therefore, we cannot conclude that the

resulting networks are scale-free.

Further limitations could be that the connections may be specific to certain tissues or

physiological contexts that are not applicable to CIPN. Many of the connections have not

been demonstrated in neural tissue. Nevertheless, this network analysis identified bio-

logical processes that are relevant to the mechanism of neuropathy induced by platinum

compounds and taxanes, thus providing the basis for future studies of the genes involved

in these biological processes. Our study has not discovered any pathways involved in pain

perception. Perhaps, due to the fact that many studies in the literature were done as focused

search for SNP associations in a relatively small set of genes in pre-selected pathways, such

as glutathione, DNA repair, cell cycle, apoptosis, cell signaling, and metabolism. Whether

new gene sequencing technology can discover genetic markers associated with differences

in neuropathic pain perception remains to be seen. In conclusion, our study has shown

putative genes associated with CIPN. Future studies will include the selection of pharmaco-

genomic panel tests that will help identify patients at risk for CIPN and the routine incorp-

oration of such panels into clinical practice.
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