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Abstract

Background: Cancer is the second leading cause of death around the world after
cardiovascular diseases. Over the past decades, various data mining studies have tried
to predict the outcome of cancer. However, only a few reports describe the causal
relationships among clinical variables or attributes, which may provide theoretical
guidance for cancer diagnosis and therapy. Different restricted Bayesian classifiers have
been used to discover information from numerous domains. This research work
designed a novel Bayesian learning strategy to predict cause-specific death classes and
proposed a graphical structure of key attributes to clarify the implicit relationships
implicated in the data set.

Results: The working mechanisms of 3 classical restricted Bayesian classifiers, namely,
NB, TAN and KDB, were analysed and summarised. To retain the properties of global
optimisation and high-order dependency representation, the proposed learning
algorithm, i.e., flexible K-dependence Bayesian network (FKBN), applies the greedy
search of conditional mutual information space to identify the globally optimal
ordering of the attributes and to allow the classifiers to be constructed at arbitrary
points (values of K) along the attribute dependence spectrum. This method represents
the relationships between different attributes by using a directed acyclic graph (DAG)
model. A total of 12 data sets were selected from the SEER database and KRBM
repository by 10-fold cross-validation for evaluation purposes. The findings revealed
that the FKBN model outperformed NB, TAN and KDB.

Conclusions: A Bayesian classifier can graphically describe the conditional
dependency among attributes. The proposed algorithm offers a trade-off between
probability estimation and network structure complexity. The direct and indirect
relationships between the predictive attributes and class variable should be considered
simultaneously to achieve global optimisation and high-order dependency
representation. By analysing the DAG inferred from the breast cancer data set of the
SEER database we divided the attributes into two subgroups, namely, key attributes
that should be considered first for cancer diagnosis and those that are independent of
each other but are closely related to key attributes. The statistical analysis results clarify
some of the causal relationships implicated in the DAG.
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Background
Cancer is the second leading cause of death around the world after cardiovascular dis-
eases. Predicting the outcome of cancer is one of the most interesting and challenging
tasks for data mining applications. To realise such a task, medical research groups collect
large volumes of medical data and employ computers with automated tools. Thus data
mining techniques have become a popular research tool among medical researchers for
identifying and exploiting patterns and relationships among numerous variables, inter-
preting complex diagnostic tests and predicting the outcome of a disease by historical
data sets. The rapid progress of data mining research has led to the development of med-
ical diagnostic support systems, which are now extensively applied across a wide range
of medical area, such as cancer research, gastroenterology and heart diseases. Pena and
Sipper [1] indicated that effective diagnostic systems should provide high-accuracy dis-
ease identification. Effective systems should also confidently indicate the accuracy of the
diagnosis with some levels. Another major important aspect of competent systems is their
interpretability, i.e., providing information on the steps followed to obtain outcomes.
Cancer diagnosis has received considerable attention from researchers, and many clas-

sical data mining algorithms have been used in medical data analysis. Decision trees can
be easily understood and interpreted for domain experts. This area has been extensively
explored for the past few years. Learned trees can be represented as a set of “if-then
rules” that improve human readability. C5.0 is one of the most important algorithms in
the decision tree family. Rafe et al. [2] used the C5.0 algorithm to develop a model for
Clementine software and to form a confusion matrix. The database used for the experi-
mental study was ”Wisconsin Breast Cancer database”, which contains 10 attributes and
699 instances. By using the boosting method, the precision of the final model can be
increased to decrease the percentage of error. Khan et al. [3] proposed a hybrid prognos-
tic scheme based on weighted fuzzy decision trees(FDT). Such a scheme is an effective
alternative to crisp classifiers that are applied independently. A hybrid prognostic scheme
analyses the hybridisation of accuracy and interpretability in terms of fuzzy logic and
decision trees. They used the Surveillance Epidemiology and End Results (SEER) database
(1973 to 2003) of the National Cancer Institute, which consists of 162,500 records with 17
variables after pre-processing. The resulting AUC values were 0.69 and 0.77 for FDT and
weighted FDT, respectively. Carefully designed pre-processing procedures help achieve
the removal/modification/splitting of key attributes. Agrawal et al. [4] discovered 2 of the
11 derived attributes that have significant predictive power. These researchers employed
the ensemble voting of 5 decision tree-based classifiers and meta-classifiers to acquire the
best prediction performance in terms of accuracy and area under the ROC curve. The
experimental study was performed on the pre-processed data along with various data
mining optimisations and validations.
Artificial neural networks (ANNs) are commonly known as biologically inspired, highly

sophisticated analytical techniques that can model extremely complex non-linear func-
tions. ANNs have been proven to be an effective classification tool even in hidden
operations within a network structure. Motalleb [5] incorporated a multilayer feed-
forward neural network with an error back-propagation algorithm to develop a predictive
model. The input parameters of the model were virus dose, week and tamoxifen citrate.
Tumour weight was included in the output parameter. Two different training algorithms,
namely, quick propagation and and Levenberg-Marquardt, were used to train ANN.
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To minimize user effort, Vukicevic et al. [6] applied genetic algorithms to achieve the
best prognostic performances relevant for clinicians (i.e., correctness, discrimination and
calibration). The only 2 user dependent tasks were data selection (input and output vari-
ables) and the evaluation of the ANN threshold probability with respect to regret theory
(RT). After optimally configuring ANNs with respect to these criteria, the clinical use-
fulness was evaluated by the RT Decision Curve Analysis. Tsao et al. [7] developed an
ANN model to predict prostate cancer pathological staging in patients prior to receiv-
ing radical prostatectomy. This experimental study examined the cases of 299 patients
undergoing retro-pubic radical prostatectomy. In this investigation, the validation was
assessed by using the current Partin Tables for the Taiwanese population. ANN induced
larger AUCs and provided a more accurate prediction of the pathologic stage of prostate
cancer.
Bayesian networks (BNs) are characterised by the use of the probabilistic approach in

solving problems and encompass the uncertainty of specific occurrences. The origin of
BNs is based on probability distribution, which can be graphically depicted. Alexander et
al. [8] applied the SEER database (1969 to 2006) to form a clinical decision support system
for the real-time estimation of the overall survival (OS) rate of colon cancer patients. The
BN model accurately estimated OS with an area under the receiver-operating character-
istic curve of 0.85. They significantly improved upon the existence of AJCC stage-specific
OS estimates. Furthermore, they determined the significant differences in OS between
low- and high-risk cohorts. Khan et al. [9] used Bayesian method to derive the poste-
rior density function for the parameters and the predictive inference for future survival
times from the exponentiated Weibull model, assuming that the observed breast can-
cer survival data follow such type of model. The Markov chain Monte Carlo method
was used to determine the inference for the parameters. They found that the exponen-
tiated Weibull model fits the male survival data. Mean predictive survival times, 95%
predictive intervals, predictive skewness and kurtosis were obtained. Jong et al. [10]
introduced a hybrid model that combined ANN and BN to obtain a good estimation
of prognosis and a good explanation of the results. In this research, the SEER database
(1973 to 2003) was employed to construct and evaluate the proposed models. Nine
clinically acceptable variables were selected to be incorporated into the nodes of the pro-
posed models. Consequently, the hybrid model achieved the highest area under the curve
value of 0.935, and the corresponding values of ANN and BN were 0.930 and 0.813,
respectively.
Other machine learning models have also been applied to solve the problems in pre-

dicting cancer survivability. Molina et al. [11] suggested that an incremental learning
ensemble of a support vector machine (SVM) must be implemented to adapt to the work-
ing conditions in medical applications and to improve the effectiveness and robustness
of the system. These studies calculated the probability estimation of cancer structures
by using SVM and performed the corresponding optimisation with a heuristic method
together with a three-fold cross-validation methodology. Mahmoodian et al. [12] devel-
oped a new algorithm on the basis of fuzzy association rule mining to identify fuzzy
rules and significant genes. In this study, different subsets of genes that have been
selected by different methods were used to separately generate primary fuzzy classifiers.
Subsequently, the researchers administered their proposed algorithm to mix the genes
associated with the primary classifiers and to generate a novel classifier.



Wang BioDataMining  (2015) 8:13 Page 4 of 15

Only a limited number of conditional probabilities can be encoded into BN because of
time limitation and space complexity. The restricted BN classifier family can offer differ-
ent trade-offs between structure complexity and prediction performance. The conditional
independence assumption and different levels of extra dependencies between predictive
attributes signify that some learning algorithms (e.g., Naive Bayes (NB) [13,14], tree-
augmented Naive Bayes (TAN) [15] orK-dependence BNs (KDB) [16,17] are popular ever
since they were developed both for learning BN parameters and data structures. An opti-
mal Bayesian classifier should capture all or at least the most important dependencies
among attributes that exist in a database. In the next section, the working mechanisms
of three popular restricted BN classifiers (i.e., NB, TAN and KDB) are summarised. Con-
sequently, the proposed learning algorithm, namely, the flexible K-dependence Bayesian
network (FKBN), applies greedy search in conditional mutual information (CMI) space
to maximise the information flow between attributes and to globally describe causal rela-
tionships while maintaining high dependency representation. The proposed algorithm
also allows the construction of classifiers at arbitrary points (values of K) along the
attribute dependence spectrum.We compare these classical Bayesian models that predict
the survivability of patients diagnosed with breast cancer. In this study, such a predic-
tion is addressed by a classification problem that predicts whether the patient belongs to
the group of those who survived after a specified period. We aim to determine an accu-
rate and stable classification model that will allow medical oncologists to make efficient
decisions for treating cancer patients.

Materials andmethods
Data

For this experimental study, 12 data sets are selected and collected to clarify the clinical
implications of the causal relationship among clinical variables and to discuss the applica-
tion of the proposed method to the high-dimensional genomic data. Table 1 summarises
the characteristics of each data set, including the numbers of instances, attributes and
classes. The first 6 data sets are collected from the SEER database [18], which is a unique,
reliable and essential resource for investigating the different aspects of cancer. Moreover,
this database combines patient-level information on cancer site, tumour pathology, stage

Table 1 Data sets for experimental study

No. Data set # Instance Attribute Class

1 BREAST 346317 200 3

2 FEMGEN 396386 200 3

3 LYMYLEUK 324441 200 3

4 MALEGEN 552483 200 3

5 COLRECT 477237 200 3

6 URINARY 272646 200 3

7 ALL-AML_Leukemia 38 7130 2

8 DLBCL-Harvard 77 7130 2

9 DLBCL-Stanford 47 4027 2

10 LungCancer-Michigan 96 7130 2

11 MLL_Leukemia 57 12583 3

12 ProstateCancer 102 12601 2

The first six data sets are selected from the SEER database, the next six data sets are selected from Kent Ridge Bio-medical
(KRBM) repository.



Wang BioDataMining  (2015) 8:13 Page 5 of 15

and cause of death. The remaining 6 data sets (e.g., gene expression, protein profiling
and genomic sequence that are related to classification) are acquired from the Kent Ridge
Bio-Medical (KRBM) repository [19].

Restricted Bayesian classifier

Bayes’ chain rule can be used to form a classifier for an input vector X = {X1, · · · ,Xn}
and class variable C.

P(c|x) = P(c)P(x|c)
P(x)

∝ P(c)P(x|c) = P(c)P(x1|c)P(x2|x1, c) · · ·P(xn|c, x1, · · · , xn−1)

(1)

Where the lower case letters represent the possible values taken by the corre-
sponding attributes. If Eq.(1) is represented by Bayesian model, the attribute vector
{C,X1, · · · ,Xi−1} is considered the parent attribute of Xi, i.e., Pai.

• NB (0-dependence classifier). In NB, class label c∗ will be inferred from a Bayesian
model of an n-dimensional attribute (input) vector X, which is conditionally independent
given class variable C

c∗ = argmaxP(c)P(x|c) = argmaxP(c)
n∏

i=1
P(xi|c) (2)

Corresponding belief network is graphically depicted in Figure 1(a). Each predictive
attribute node in NB has the class variable as its only parent. Therefore, NB enjoys the
benefit of not being required to learn the structure, and probabilities P(c) and P(xi|c) can
be easily estimated from training instances. Figure 1(b) illustrates that all causal relation-
ships among the predictive attributes are removed; thus, NB is the simplest form of BNs.
However, the conditional independence assumption made by NB is rarely valid in reality.

•TAN (1-dependence classifier). In effectively weakening the conditional independence
assumption of NB, structure extension is the most direct procedure for improving NB
because attribute dependencies can be explicitly represented by arcs. TAN introduces

Figure 1 The 0-dependence relationship among attributes of NB model and corresponding Pai of each
attribute Xi are as (a) and (b) show, respectively. The attributes annotated with symbol "-" represent those
redundant ones for NB. For simplicity, class label is not included in Pai .
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more dependencies by allowing each attribute node to have at most one parent. An exam-
ple of the network structure of TAN with five attributes and with corresponding causal
relationships are depicted in Figure 2(a) and (b), respectively. By developing a maximum
weighted spanning tree, TAN achieves a globally optimal trade-off between the com-
plexity and learnability of the model. However, the number of dependencies that can be
represented is limited, and this algorithm cannot be extended to handle high-dependence
relationships. The weight of arcs is calculated by using CMI(Xi,Xj|C).

• KDB (K-dependence classifier). The probability of each attribute value in KDB is con-
ditioned by the class and otherK attributes. The KDB algorithm adopts a greedy strategy
to identify the graphical structure of the resulting classifier. KDB also achieves the weights
of the relationship between attributes by computing CMIs that can be illustrated in a
matrix. Figure 3 demonstrates the format of the matrix and an example of KDB with four
predictive attributes. KDB is guided by a rigid order that is obtained by applying mutual
information between predictive attributes and class variables. Mutual information does
not consider the interaction among predictive attributes. This marginal knowledge may
result in suboptimal order. Without loss of generality, the attribute order is assumed to
be {X1, · · · ,X4} by comparing mutual information. Figure 4(a) indicates the correspond-
ing network structure of KDB when K=2, and the causal relationships are depicted in
Figure 4(b). Although the causal relationship between X2 and X1 is the weakest, the latter
is selected as the parent attribute of the former. By contrast, the strong causal relationship
between X4 and X1 is neglected.

The FKBN Algorithm

By considering more attributes as possible parent attributes, prediction performance will
be improved because the chain rule is approximately achieved. FKBN applies greedy
search in CMI space to represent the strongest causal relationships and to retain the priv-
ileges of TAN and KDB (i.e., global optimisation and higher dependency representation).
On the basis of this condition, FKBN adds high dependencies at arbitrary points (values
of K) along the attribute dependence spectrum such as KDB. The newly added arc corre-
sponds to the strongest relationship that is not implicated in the existing tree structure.

Figure 2 The 1-dependence relationship among attributes of TAN model and corresponding Pai of each
attribute Xi are as (a) and (b) show, respectively. The attributes annotated with symbol "-" represent those
redundant ones for TAN. For simplicity, class label is not included in Pai .
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Figure 3 The format and an example of CMImatrix are as (a) and (b) show, respectively. Because of the
symmetrical characteristic of conditional mutual information, only the lower triangular matrix is shown.

The direction of each arc should point outward to ensure the characteristic of the directed
acyclic graph. In this research, we also use CMI to measure the weight of the relation-
ship between attributes. Assuming that {X1,X2, · · · ,Xn} are n attributes and C is the class
variable, the learning algorithm of FKBN is depicted as follows:

Algorithm 1: FKBN
Input: A database of pre-classified instances, DB, and the K value for the maximum
allowable degree of attribute dependence.
Output: A K-dependence Bayesian classifiers with conditional probability tables
determined from the input data.
1. Compute the CMI between each pair of attributes and build the CMI matrix.
Compute the mutual information I(Xi;C) for each attribute Xi.
2. Repeat until BN includes all domain attributes
• Add a node to BN representing Xi.
• Add an arc from C to Xi in BN .
3. Select the one I(Xi;Xj|C) that corresponds to the largest value in CMI matrix and
set Xi as the root attribute Xroot if I(Xi;C) > I(Xj;C).
4. Repeat until at most K parent attributes can be selected for each attribute.
• Select the one I(Xi;Xj|C) that corresponds to the largest value that remains in
CMI matrix.
• Transform the undirected arc Xi—Xj to a directed one by setting the direction to
be outward from Xroot .
• Add the directed arc to BN .
• Remove I(Xi;Xj|C) from the CMI matrix.
5. Compute the conditional probability tables inferred by the structure of BN using
counts from DB, and output BN .

In the above description of the algorithm, Step 4 requires the selection of most K par-
ents for each attribute. We set K=2 in the following discussion. When K=2, Figure 5(a)
shows the network structure of FKBN corresponding to the CMI matrix shown in
Figure 3. The causal relationships in this case are depicted in Figure 5(b). All strong causal
relationships are implicated in the final network structure.
The experimental research has been performed with the approval of the ethics commit-

tee of JiLin University of China.
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Figure 4 The K-dependence relationships among attributes inferred from KDB and an example of CMImatrix
are as (a) and (b) show, respectively. The unused causal relationship in (b) is annotated in pink.

Software and programs
The following algorithms are compared:

· NB, standard Naive Bayes.
· TAN[20], Tree-augmented Naive Bayes applying incremental learning.
· KDB, standard K-dependence Bayesian classifier.
The experimental system is implemented in C++. The missing values for the qualita-

tive and quantitative attributes are replaced with modes and means from the training
data, respectively. For each benchmark data set, numeric attributes are discretised by
using MDL discretisation[21]. Base probability estimates P(c),P(c, xi) and P(c, xi, xj) are
smoothed by using the Laplace estimate:

Figure 5 The K-dependence relationships among attributes inferred from FKBN and an example of CMI
matrix are as (a) and (b) show, respectively. The unused causal relationship in (b) is annotated in pink.
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⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

P̂(c) = F(c) + 1
K + k

P̂(c, xi) = F(c, xi) + 1
Ki + ki

P̂(c, xi, xj) = F(c, xi, xj) + 1
Kij + kij

(3)

where F(·) is the frequency with which a combination of terms appears in the training
data, K is the number of training instances for which the class value is known, Ki is the
number of training instances for which both the class and attribute Xi are known, Kij is
the number of training instances for which all of the class, and attributes Xi and Xj are
known. k is the number of attribute values of class C, ki is the number of attribute value
combinations of C and Xi, and kij is the number of attribute value combinations of C, Xj
and Xi.

Results
In machine learning, one of the standard measures of predicting the performance of
trained models is zero-one loss, which is a powerful tool from sampling theory statistics
used for analysing supervised learning scenarios [22]. Suppose c and ĉ are the true class
variable and the outcome of a learning algorithm, respectively, the zero-one loss function
is construed as follows:

ξ(c, ĉ) = 1 − δ(c, ĉ),

where δ(c, ĉ) = 1 if ĉ = c and 0 otherwise. When the zero-one loss is lower, the prediction
performance of a corresponding classifier is better. If the amount of data is satisfactorily
large, the average zero-one loss can be estimated by using computer intensive resampling
methods such as cross-validation. Cross-validation mimics the use of training and test
sets by repeatedly training the algorithmN times with a fraction 1/N of training examples
left out for testing purposes. Table 2 presents the comparative results of zero-one loss
estimated by 10-fold cross-validation to accurately estimate the average performance of
an algorithm.

Table 2 Experimental results of zero-one loss and standard deviation

Data set NB TAN KDB FKBN

BREAST 0.191±0.002 0.166±0.001 0.164±0.001 0.162±0.001

FEMGEN 0.203±0.002 0.149±0.002 0.131±0.001 0.128±0.001

LYMYLEUK 0.297±0.002 0.269±0.001 0.261±0.001 0.257±0.001

MALEGEN 0.220±0.002 0.163±0.002 0.169±0.002 0.160±0.002

COLRECT 0.197±0.002 0.180±0.001 0.177±0.001 0.175±0.001

URINARY 0.205±0.003 0.180±0.002 0.172±0.002 0.169±0.002

ALL-AML_Leukemia 0.290±0.405 0.289±0.421 0.290±0.435 0.289±0.429

DLBCL-Harvard 0.247±0.135 0.247±0.147 0.246±0.132 0.246±0.129

DLBCL-Stanford 0.489±0.289 0.489±0.309 0.489±0.317 0.489±0.277

Lung Cancer-Michigan 0.104±0.102 0.103±0.089 0.104±0.110 0.104±0.107

MLL_Leukemia 0.649±0.257 0.648±0.261 0.649±0.248 0.646±0.249

ProstateCancer 0.490±0.113 0.490±0.110 0.491±0.107 0.489±0.116

The first six data sets are selected from the SEER database, the next six data sets are selected from Kent Ridge Bio-medical
(KRBM) repository.
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Friedman proposed a non-parametric measure [23], Friedman test (FT), which ranks
the algorithms for each data set separately by comparing zero-one loss. The best perform-
ing algorithm getting the rank of 1, the second best rank 2, · · · . In case of ties, average
ranks are assigned. Let rji be the rank of the j-th of k algorithms on the i-th ofN data sets.
FT compares the average ranks of algorithms, Rj = 1

N
∑

i r
j
i. FT helps to compare and

evaluate the overall prediction performance of different learning algorithms when dealing
with numerous data sets. A difference is considered to be significant when the outcome
of a two-tailed binomial sign test is less than 0.05. The experimental results of FT are
shown in Table 3. By comparing average FT we can see that, the order of these algorithms
is {FKBN, KDB, TAN, NB}.
The prediction superiority of FKBN to the other classifiers is remarkably obvious espe-

cially when dealing with large data sets. The main reason for such a condition may be the
case that, when data size is large enough for probability estimation and relational depen-
dency representation, the credible conditional dependencies among attributes extracted
based on information theory play a key role in prediction. By generating a maximal span-
ning tree, TAN can achieve a trade-off between the model and computational complexity.
Therefore, although TAN is restricted to have at most one parent node for each predictive
attribute, its structure is more reasonable than NB and can relatively exhibit relation-
ship between attributes. FKBN further relaxes the assumption by allowing at least two
attributes to be parents and to increase the robustness of the final model. Furthermore,
FKBN can fully extract the causal relationship between attributes by applying a dynamic
searching strategy in the early building stage to identify the optimal attribute order. In this
event, the final model is significantly flexible and credible.
From the viewpoint of dependency complexity, NB expresses zero-dependence

because no dependency relationship exists between attributes. Similarly, TAN is a
one-dependence based-Bayesian classifier. KDB and FKBN are two-dependence based-
Bayesian classifiers. The KRBM data sets are exceedingly small; thus, the conditional
dependencies measured by the CMI are weak. Accordingly, all high-dependence Bayesian
classifiers (e.g., TAN, KDB or FKBN) degenerate to be NB. The results of zero-one loss
reveal that they perform almost the same when dealing with KRBM data sets.

Table 3 Experimental results of Friedman test

Data set NB TAN KDB FKBN

BREAST 4.0 2.0 2.0 2.0

FEMGEN 4.0 3.0 1.5 1.5

LYMYLEUK 4.0 2.0 2.0 2.0

MALEGEN 4.0 1.5 3.0 1.5

COLRECT 4.0 2.0 2.0 2.0

URINARY 4.0 3.0 1.5 1.5

ALL-AML_Leukemia 2.5 2.5 2.5 2.5

DLBCL-Harvard 2.5 2.5 2.5 2.5

DLBCL-Stanford 2.5 2.5 2.5 2.5

LungCancer-Michigan 2.5 2.5 2.5 2.5

MLL_Leukemia 2.5 2.5 2.5 2.5

ProstateCancer 2.5 2.5 2.5 2.5

Average 3.3 2.4 2.3 2.1

A difference is considered to be significant when the outcome of a two-tailed binomial sign test is less than 0.05.
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Discussion
Breast cancer is the second leading cancer responsible for the highest mortality rate
among women. Early detection and diagnosis are proven to be the only means of curb-
ing this disease and of reducing its mortality rate. Physicians must have access to a
smart system for predicting this illness on time before it is too late to be treated.
Predicting the outcome of cancer and detecting dependencies among clinical vari-
ables or attributes play a pivotal role in cancer diagnosis and therapy. Over the past
decades, many data mining studies have tried to predict the five-year survival rate of
breast cancer patients. However, even the most accurate predictive forecasts have lim-
ited value unless they can also provide clear action procedures to induce the desired
results.
To clarify the FKBN algorithm more clearly, we also choose 20 attributes as described

in [24] from breast cancer data set in SEER database. The detailed information of the
selected attributes is shown in Table 4 and is employed to develop the Bayesian model.
Cause-specific death prediction is used as the class label. The graph model of the pre-
dictive attributes in the breast cancer data set (Figure 6) is generated on the basis of
the results of the FKBN analysis. Figure 6 demonstrates that the attributes Xkey =
{X13,X11,X5, X15, X16,X17,X3, X7,X2,X10,X14}, which correspond to {Rx-SummSurg-/-
Rad-Seq, Rx-SummSurg-Prim-Site, Grade, SEER-historic-stage-A, SEER-Summary-Stage-
1977, Number-of-primaries, Primary-Site, EOD-Extension, Age-at-diagnosis, Regional-
Nodes-Examined and CS-Schema-v0203}, play key roles for prediction. These attributes
have the same characteristics (i.e., they are affected by other attributes and also act on

Table 4 Attributes available for analysis

Attribute Type Explanation Corresponding

symbol in

Figures 6, 7, 8

Race/ethnicity Categorical 22 races X0
Sex Binary Female/male X1
Age-at-diagnosis Numeric Years X2
Primary-Site Categorical Eleven sites X3
Histologic-Type-ICD-O-3 Categorical International Prediction of Diseases for

Oncology Third Revision
X4

Grade Categorical Tumor grade X5
EOD-Tumor-Size Numeric Size of primary tumor X6
EOD-Extension Categorical Invasive extension of primary tumor X7
EOD-Lymph-Node-Involve Categorical Extension of lymph node involvement X8
Regional-Nodes-Positive Numeric No. of positive regional lymph nodes X9
Regional-Nodes-Examined Numeric No. of regional lymph nodes examined X10
Rx-Summ-Surg-Prim-Site Categorical Extension of surgery X11
Rx-Summ-Sur-Oth-Reg/Dis Categorical Surgery of other regional site(s), distant

site(s), or distant lymph node(s)
X12

Rx-Summ-Surg-/-Rad-Seq Categorical Prior to/after surgery/both X13
CS-Schema-v0203 Categorical CS information collected based on site and

histology
X14

SEER-historic-stage-A Categorical A stage system coded by SEER X15
SEER-Summary-Stage-1977 Categorical A stage system coded by SEER X16
Number-of-primaries Numeric Number of primaries X17
First-malignant-primary-indicator Binary Yes/no X18
Class Categorical SEER cause-specific death prediction C
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Figure 6 The FKBN network structure corresponding to SEER data set. Attributes {X0, X1, · · · , X18, C}
correspond to clinical variables Race, Sex, Age, Primary-Site, Histologic-Type, Grade, EOD-Tumor-Size,
EOD-Extension, EOD-Lymph-Node-Involve, Regional-Nodes-Positive, Regional-Nodes-Examined, Rx-Summ-Surg-
Prim-Site, Rx-Summ-Sur-Oth-Reg, Rx-Summ-Surg-/-Rad-Seq, CS-Schema-v0203, SEER-historic-stage-A,
SEER-Summary-Stage-1977, Number-of-primaries, First-malignant-primary-indicator and Class, respectively.

other attributes). The other attributes are not parents of any other attributes and play a
secondary role. For example, attribute X1, i.e. Sex, is dependent on X2 (Age-at-diagnosis)
and X14 (CS-Schema-v0203). The causal relationships among these attributes are sum-
marised in Figure 7. From the viewpoint of medical diagnosis, the key attributes should
be considered first. Subsequently, the non-key attributes, which are dependent on key
attributes, should then be extensively analysed. For example, the local dependent and
independent structures of X17 are shown in Figure 8. Attribute X17 is directly dependent

Figure 7 The causal relationships inferred from breast cancer data set of SEER database. Attributes
{X0, X1, · · · , X18} correspond to clinical variables Race, Sex, Age, Primary-Site, Histologic-Type, Grade,
EOD-Tumor-Size, EOD-Extension, EOD-Lymph-Node-Involve, Regional-Nodes-Positive, Regional-Nodes-Examined,
Rx-Summ-Surg-Prim-Site, Rx-Summ-Sur-Oth-Reg, Rx-Summ-Surg-/-Rad-Seq, CS-Schema-v0203,
SEER-historic-stage-A, SEER-Summary-Stage-1977, Number-of-primaries and First-malignant-primary-indicator,
respectively.
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Figure 8 The local independent and dependent network structure of attribute X17 on SEER data set are as
(a) and (b) show, respectively. Attributes {X0, X1, X2, X5, X7, X8, X9, X10, X11, X13, X14, X15, X16, X17} correspond to
clinical variables Race, Sex, Age, Grade, EOD-Extension, EOD-Lymph-Node-Involve, Regional-Nodes-Positive,
Regional-Nodes-Examined, Rx-Summ-Surg-Prim-Site, Rx-Summ-Surg-/-Rad-Seq, CS-Schema-v0203,
SEER-historic-stage-A, SEER-Summary-Stage-1977, Number-of-primaries and First-malignant-primary-indicator,
respectively.

on attributes {X16,X15} (Figure 8(a)), which are dependent on {X11,X5}. In this case, X13
is the final cause. Doctors can follow this order to lower the time cost for diagnosis and
expenditure on unnecessary physical examination. On the other hand, Figure 8(b) demon-
strates that the attributes {X0,X7} are directly dependent on X17 and their values may
be affected by X17. Furthermore, {X2,X8} and then {X9,X10,X1,X14} will be affected by
X17 indirectly. In the following discussion, we will clarify Figure 6 with respect to sev-
eral common relationships Sex/Age, Race/SEER-Summary-Stage and Tumor Size/Race,
respectively.
Sex/Age: Approximately 343,919 cases of breast cancer were expected to be diagnosed

in women, along with 2,398 cases in men. Figure 6 indicates that a direct relationship
exists between the Sex (X1) and Age (X2). Accordingly, Age should be considered a com-
plementary factor of Sex for cancer diagnosis. A statistical analysis of the breast cancer
data set reveals that incidence rate begins to increase when the woman is 40 years old and
reaches its maximum between 54 and 68 years old. This event may be due to tumours
diagnosed at younger ages beingmore aggressive and/or less responsive to treatment. The
age of 40 is also a turning point for mortality rate. The mortality rate of women decreases
when their age increases from 0 to 40. The mortality rate will then remain stable when
the age is between 40 and 70. When the age increases from 70 to 110, the mortality rate
will increase and reach its maximum. Older patients may reflect lower rates of screening,
detection of cancers via mammography and/or incomplete detection. In this research,
the determined median age at the time of breast cancer diagnosis was 60.78. This finding
implies that half of women who developed breast cancer were 61 years old or younger at
the time of diagnosis. Meanwhile, similar to female breast cancer, the cause-specific mor-
tality rates of male breast cancer generally increase with age. Given the infrequency of
male breast cancer, which accounts for less than 1% of all breast cancer cases, remarkably
less confident information can be inferred to predict the outcome of such a disease.
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Race/SEER-Summary-Stage: The American Cancer Society has determined notable
differences in breast cancer mortality rates between different states across various socioe-
conomic strata and between different racial/ethnic groups. The statistical analysis of
breast cancer data set illustrates that Caucasian women are more likely to develop breast
cancer. In fact, Caucasian women account for 84.92% of all breast cancer cases and
African-American women account for only 10.23% of all cases. However, a substantial
racial gap can be observed in mortality rate. In particular, the findings of this research
indicated that the morality rate for Caucasian and African-American women were 7.68%
and 13.47%, respectively. Figure 6 specifies that a causal relationship exists between Race
(X0) and SEER-Summary-Stage (X16). This survival disparity is attributed to the latter
stage of detection among African-American women, who have the highest morality rate
among any racial or ethnic group. The presence of additional illnesses, lack of health
insurance and disparities in receipt of treatment probably contribute to the differences in
breast cancer survival.
Tumor Size/Race: The incidence rates of breast cancer by tumour size greatly differ.

American women are less likely to be diagnosed with middle-sized tumours and more
likely to be diagnosed with larger (>5.0 cm) or smaller tumours (<1.5 cm). Mortal-
ity rate increases with increasing tumour. The mortality rate corresponding to smaller
tumours is 6.02%, and the mortality rate corresponding to middle-sized tumours and
larger tumours are 9.86% and 13.21%, respectively. Figure 6 demonstrates that a causal
relationship exists betweenTumour Size (X6),Race (X0) and SEER-Summary-Stage (X16).
For smaller tumours, the incidence rate is 17.72% among Caucasian women, but 11.84%
among African-American women. The incidence rate for larger tumours (>5.0 cm) is
8.74% among Caucasian women, but 10.95% among African-American women. This
incidence disparity can also be attributed to both later cancer stages at detection and
poorer stage-specific survival among African-American women. Poverty, low education
and unequal access to medical care are associated with low breast cancer incidence.

Conclusion
BNs can graphically describe conditional dependency among attributes and have been
previously identified as computationally efficient approaches for further reducing predic-
tion error. The proposed algorithm, namely, FKBN, offers a trade-off between probability
estimation and network structure complexity. With enough instances to detect reliable
dependencies among predictive attributes, the findings of this study are helpful in diag-
nostic practice and drug design. Possible extensions of this investigation should involve
applying the novel computational framework in categorising other diseases and detecting
properties that can be targeted for cancer therapy.Moreover, computational advancement
will require improving the prediction accuracy of the proposed methodology by updating
it to existing algorithms.
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