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Abstract

Background: Specific fragments, coming from short portions of DNA
(e.g., mitochondrial, nuclear, and plastid sequences), have been defined as DNA
Barcode and can be used as markers for organisms of the main life kingdoms.
Species classification with DNA Barcode sequences has been proven effective
on different organisms. Indeed, specific gene regions have been identified as
Barcode: COI in animals, rbcL and matK in plants, and ITS in fungi. The classification
problem assigns an unknown specimen to a known species by analyzing its
Barcode. This task has to be supported with reliable methods and algorithms.

Methods: In this work the efficacy of supervised machine learning methods to
classify species with DNA Barcode sequences is shown. The Weka software suite,
which includes a collection of supervised classification methods, is adopted to
address the task of DNA Barcode analysis. Classifier families are tested on synthetic
and empirical datasets belonging to the animal, fungus, and plant kingdoms. In
particular, the function-based method Support Vector Machines (SVM), the
rule-based RIPPER, the decision tree C4.5, and the Naïve Bayes method are considered.
Additionally, the classification results are compared with respect to ad-hoc and
well-established DNA Barcode classification methods.

Results: A software that converts the DNA Barcode FASTA sequences to the Weka
format is released, to adapt different input formats and to allow the execution of the
classification procedure. The analysis of results on synthetic and real datasets shows
that SVM and Naïve Bayes outperform on average the other considered classifiers,
although they do not provide a human interpretable classification model. Rule-based
methods have slightly inferior classification performances, but deliver the species
specific positions and nucleotide assignments. On synthetic data the supervised
machine learning methods obtain superior classification performances with respect to
the traditional DNA Barcode classification methods. On empirical data their classification
performances are at a comparable level to the other methods.

Conclusions: The classification analysis shows that supervised machine learning
methods are promising candidates for handling with success the DNA Barcoding
species classification problem, obtaining excellent performances. To conclude, a
powerful tool to perform species identification is now available to the DNA
Barcoding community.
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Background
In 2003 Hebert et al. [1] proposed DNA Barcoding as a technique to identify species.

Specific fragments, coming from short portions of mitochondrial, nuclear and plastid

DNA, have been defined as DNA Barcode and can be used as markers for organisms of

the main life kingdoms. The following gene regions are chosen as Barcodes:

cytochrome C Oxidase subunit I (COI) for animals [2], rbcL and matK for plants [3],

and the Internal Transcribed Spacer (ITS) for fungi [4].

Taxonomists identify biological specimens by morphological features, however in

some tough cases the identification becomes complex even for experts. DNA Barcoding

solves this problem, because it is able to distinguish species and identify specimens

(also incomplete, damaged or immature ones) using a very short gene sequence, that

can be easily obtained from tiny amounts of tissue.

It is now recognized that a DNA Barcode provides the sufficient information needed

to classify a specimen to species, showing an high variability even among closely related

species [5,6]. Thus, since 2004 the International Barcode Of Life project (IBOL) and the

Consortium for the Barcode Of Life (CBOL) has promoted international initiatives

devoted to the development of DNA Barcoding as a global standard for the identification

of biological species, aiming to build up an online freely available sequence database

(www.barcodinglife.org).

Species classification with DNA Barcode is used to assign an unknown specimen to a

known species by analyzing its DNA Barcode sequence, and has been proven effective

on different organisms [5,6]. It has been handled with several approaches. So far, the

following taxonomy of ad-hoc methods has been used [7,8]:

(i) tree-based methods;

(ii) similarity-based methods;

(iii) character-based methods (also called “diagnostic methods”).

Tree-based methods assign unidentified Barcodes (query) to species based on their

membership of clusters in a DNA Barcode tree. This approach can be achieved, for

example, with Parsimony (i.e., PAR [9]), or Neighbor Joining (i.e., NJ [10]), or Bayesian

Inference [11]. Similarity-based methods (e.g., BLAST [12], NN [13], and TaxonDNA

[14]) assign query Barcodes to species based on how much DNA Barcode characters

they have in common. Character-based methods (e.g., DNA-BAR [15], BLOG [7],

CAOS [16], BRONX [17,18], PTIGS-IdIt [19], Linker [20], Alignment-free analytics

[21]) rely on the presence/absence of particular characters in DNA Barcode sequences

for identification, instead of using them all [8].

The DNA Barcode classification problem may be approached as a supervised machine

learning problem in the following way [7]: given a reference library composed of DNA

Barcode specimen sequences of known species and a collection of unknown DNA

Barcode sequences (query set), recognize the latter into the species that are present in the

library.

More formally, given

(i) a set of training examples (in the following referred as a reference set) containing

specimens with a priori known species membership and

http://www.barcodinglife.org
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(ii) a test set (in the following referred as a query set) containing specimens which

require classification,

the learning function is the following: f: X → Y, where X is the input space (the DNA

Barcode sequences attributes, e.g., the sequence positions with their nucleotides

assignments) and Y is the output space (the species labels in which input data has to be

classified). In a supervised machine learning problem the user has to provide as input a

reference library containing specimens with a priori known species membership. Based

on this reference set, the machine learning software computes the classification model.

Subsequently, the classification model can be applied to a query set which contains

specimens that require classification. The query set can contain query specimens with

unknown species membership or, alternatively, specimens that also have a priori known

species membership, allowing verification of the specimen classifications correctness

[7]. To obtain reliable results the reference set has to be composed of a sufficient

number of specimen sequences for each species (our experiments show that at least 4

specimens per species are necessary to obtain a reliable classification rate), and the

sequences of each species have to include possibly all the nucleotide polymorphisms

(variations). Consequently, the query set has to comprise only specimens from the same

species that are present in the reference library. In general, reference and query sets are

provided separately; if only one dataset is provided, it can be randomly divided over

reference and query data in order to test the efficacy of the method. The ratio of the

number of specimens in the reference and query dataset depends on the number of

specimens and usually a reasonable choice is a 80–20 percentage split.

The paper [13] includes a high level description of some supervised machine learning

methods (Nearest Neighbor, CART, Random Forest and Kernel Functions), but an

analysis framework and software are not provided.

In this work the efficacy of supervised machine learning methods to classify species

with DNA Barcode sequences is shown, through the performance comparison with

respect to ad-hoc DNA Barcode analysis methods. The Weka machine learning

software [22], which includes a collection of supervised classification methods, is

adopted to address the task of DNA Barcode analysis. Different types of classifiers

(trees, rules, lazy learners, Bayesian and functions) are tested on public available

synthetic and empirical datasets belonging to the animal, plant, and fungus kingdoms.

In particular, the function-based method Support Vector Machines (SMO), the

rule-based RIPPER (Jrip), the decision tree C4.5 (J48), and the Bayesian-based

method Naïve Bayes are considered.

Methods
The supervised machine learning algorithms

The Weka tools collection for Machine Learning and Data Mining analysis [22] is used

to approach the species classification problem with DNA Barcode sequences. Weka

(Waikato Environment for Knowledge Analysis) is a Java open source package that

collects the most popular algorithms to handle classification, numeric prediction, or

clustering problems. Among the several packages collected in Weka, the “Weka.classifier”

package includes the implementation of classification and prediction algorithms,

comprising the most important “Classifier” class. The latter defines the structure of any
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schema of classification or prediction assessment and it is made up by two methods,

buildClassifier() and classifyIstances(), whose implementation is necessary for all supervised

machine learning algorithms.

In Table 1 all the available algorithms for classification, numeric prediction and

clustering assessments are summarized. In greater detail, Table 2 highlights the Weka

classifiers.

Algorithms description

Among the Weka classifiers the following methods are tested on DNA Barcode

sequences: (i) the function-based method Support Vector Machines (SMO) [23]; (ii)

the rule-based RIPPER (Jrip) [24]; (iii) the decision tree C4.5 (J48) [25]; and (iv) the

Bayesian-based method Naïve Bayes [26].

SMO (SVM)

SMO [23] is the Weka implementation of the supervised learning function-based

method Support Vector Machines (SVM). SMO is a discriminative classifier, that

converts the reference data objects in multi-dimensional vectors and defines a

separating hyperplane among the objects belonging to different classes, i.e., given

labeled training data, the algorithm outputs an optimal hyperplane that separates the

classes with the largest minimum distance. After a proper vector transformation, new

objects from the query set are evaluated according to this separating hyperplane. For

example, for a linearly separable set of 2D-points which belong to one of two classes,

the SVM finds a separating line where points of the same class lie on the same

half-space. One of the most relevant features of the SVM is to use a non-linear

transformation of the input space in a very efficient way via a linear Kernel function.

SMO performs usually with high classification accuracy, but its main drawback is that no

human readable classification model is provided as output.

Jrip (RIPPER)

Jrip (RIPPER) [24] imp lements a propositional rule learner, Repeated Incremental

Pruning to Produce Error Reduction, which was proposed by William W. Cohen. The

algorithm performs two main phases: the first one builds an initial set of rules and the

second one optimizes the rule set k times (typically k is set to 2). Specifically, the

classes are examined in increasing size and an initial set of rules for each class is

generated using incremental reduced error pruning. Then, all the examples of a

particular judgment in the training data are treated as a class, and a set of rules that

covers all the members of that class is found. Thereafter, the algorithm proceeds to the
Table 1 Weka algorithms collection

Classification Prediction Meta Clustering

Decision trees Linear regression Bagging EM

Support Vector Machines Model tree generators Boosting Coweb

Naïve Bayes Instance-based learners Stacking -

Decision tables Decision tables Regression via classification -

Locally weighted regression Locally weighted regression Classification via regression -

Rule learners Multi-layer perceptron Cost sensitive classification -



Table 2 Weka classifiers

Kind of classification Description

Bayes Bayesian network (e.g., Naïve Bayes)

Functions Linear regression, neural networks, support vector machine

Lazy Instance-based similarity (e.g., Nearest neighbor algorithm)

Meta Bagging, boosting, stacking, regression through classification,
classification through regression, cost sensitive classification

Rules Rule-based classifiers

Trees Tree classifier (e.g., decision tree)

Mi Algorithms that handle multi-instance data

Misc Various classifiers that do not fit in any another category
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next class, repeating the same procedure until all classes have been covered. This

method is a good candidate for DNA Barcoding as it provides a classification model

composed of logic rules for each species in the dataset, that can be used to compactly

characterize the analyzed specimens.

J48 (C4.5)

J48 [25] is a supervised classification method belonging to the decision trees family. In

particular, it represents the Weka implementation of the decision tree algorithm C4.5,

that greedily looks for the best split and the best feature at each node in terms of the

information gain measure. A decision tree is a simple tree structure whose non-

terminal vertices represent tests on one or more attributes, while the terminal ones

reflect the results of the decision. The key advantages of decision trees are the

following: (i) they are simple and easily convertible into a set of rules; (ii) both numerical

and categorical data can be classified (even if the output attribute must be categorical);

(iii) there are no a priori assumptions about the nature of the features (e.g., qualitative,

quantitative, ordinal data). However, decision trees are unstable (i.e., variations in the

training data can produce different set of attributes to be chosen) and generally multiple

output attributes are not allowed. Also in this method a classification model is given as

output (the decision tree), which can be easily read as a set of logic rules composed by

sequence positions and nucleotide assignments.

Naïve Bayes

Naïve Bayes [26] is a Bayesian-based classifier using estimator classes. It is one of the

most practical learning methods often used when a large reference set is available.

A Bayesian Network (BN) is the joint probability distribution of a set of variables:

based on the state of the observable variables and a priori probabilities represented by

the edge in the relations between variables, the a posteriori probabilities of the unknown

states are evaluated. In this way, BN can be considered as a tool of investigation and

forecasting. Mathematically, the BN is a directed acyclic graph whose vertices are

variables or states, while the edges are statistical dependencies between the variables and

local probability distributions of the leaf vertices compared to the values of the parent

ones. The absence of an edge between two vertices reflects their conditional independ-

ence. Contrarily, the presence of an edge from a vertex Xi to a vertex Xj can be explained

as Xi is a direct cause of Xj. The critical assumption of a Naïve Bayes classifier is the
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conditional independence of the set of attributes that describes each x ∈ X instance of the

target function f: X → Y. Like in the SVM method, no clear classification model is

provided to the investigator, who can only perform a “blind” assignment of specimen

to species.

Input, sequences conversion and output

DNA Barcode sequences are normally available and delivered in FASTA format,

but Weka accepts as input its own file format called ARFF. Therefore, an integrated

multi-platform (Windows, Linux and MacOS) Java program, available at dmb.iasi.cnr.it/

supbarcodes.php, that converts the DNA Barcode FASTA sequences to the ARFF Weka

format was developed and released (see Figure 1 for a screenshot).

Note that for supervised machine learning methods, the sequences have to be of the

same region or pre-aligned to the same region before being processed (e.g., sub-

segments of COI or rbcL coding genes) [7].

Input files are DNA Barcode sequence alignments in the standard FASTA format

(query and reference), that need to be converted in the Weka input format (ARFF). The

FASTA format is composed of a heading line for each sequence, that is formed by the

starting character “>”, followed by the “specimen ID” and the “species name field”

(divided by a vertical bar “|”). The following lines contain the nucleotide sequences (i.e.,

a string of A, C, G, or T characters). An example of FASTA format is given in Figure 2.

The software converts FASTA format into the ARFF Weka format. The latter is

composed of two parts. The first part of the file includes the name of the dataset

(starting with “@relation”), the heading line (starting with “@attribute”) for each attribute

(i.e., sequence position), where the type of attribute is specified (e.g., numeric, a number,

or categorical, a string of characters) and finally a complete list of the species enclosed in

curly brackets. The second part (starting with “@data”) comprises a line for each

specimen, that stores the attribute values separated by a comma.

In the ARFF format, the attributes represent the nucleotide positions and their

assignments in the sequence, their number is equal to the sequence length plus the

class label (i.e., the species). Each dataset shows the last attribute heading line (starting
Figure 1 DNA Barcode FASTA to Weka converter. Screenshot of the converter tool developed to obtain
the ARFF Weka format from the standard FASTA format of the DNA Barcode sequences.

http://dmb.iasi.cnr.it/supbarcodes.php
http://dmb.iasi.cnr.it/supbarcodes.php


Figure 2 Example of FASTA format. The FASTA format is composed of two main parts: (i) the heading
line of each sequence, starting with the character “>”, followed by the “specimen ID” and the “species name
field” (dived by a vertical bar “|” ) and (ii) the nucleotide sequences (a string of A, C, G, T characters).
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with “@attribute class”) comprising the species of the analyzed sequence. Moreover, the

attribute values are the nucleotides (A, C, G, T) and they are mapped in a set of integer

numbers from 1 to 4 (1 = A, 2 = C, 3 = G, 4 = T). Indeed, since Weka requires the same

positions and the same order for categorical attributes (like A, C, G, T nucleotide

assignments in the sequences) when reference and query sets are provided separately,

(A, C, G, T) needed to be converted and mapped into numeric attributes (1, 2, 3, 4). In

the nucleotide positions where ambiguous bases (e.g., K, M) and missing data (e.g., −)
are present, the special character “?” is used for the conversion, meaning that these

positions are not considered for classification purpose (i.e., only the certain bases

are taken into account). An example of file in ARFF Weka format is depicted in

Figure 3.

Weka supervised machine learning outputs are the classification accuracy rates of

query and reference sequences, the classification models, e.g., decision trees, logic rules,

etc., and the specimens to species assignments. Additional outputs can be obtained by

setting specific Weka flags, see [22] and the user manual for further details.

BLOG

Among the ad-hoc DNA Barcodes classification tools, a supervised machine

learning method is called BLOG (Barcoding with LOGic) [7]. It is a character-
Figure 3 Example of ARFF format. The input format of the Weka package is shown: the first part of the
file begins with “@relation” and includes (i) the name of the dataset and (ii) a heading line (starting with
“@attribute”) for each attribute (sequence position), including the type of attribute, and the complete list of
the species enclosed in braces. The second part of the file begins with “@data” and comprises a line for
each specimen with the attribute values (nucleotide positions assignments) separated by comma.
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based method whose aim is to classify specimens to species using classification

rules that compactly characterize species in terms of DNA Barcode locations of key

diagnostic nucleotides. BLOG computes for each species in the reference set the

distinctive nucleotide positions of the DNA Barcode sequences and the logic classification

rules in the form of “if-then” that are able to characterize a species in a compact way. The

classification rules can then be applied to a query set. An example of classification rule is

“if pos40 = T and pos265 = T then the specimen is classified as Ompok bimaculatus”. For

further details on BLOG the reader may refer to [7,27,28].

Limits of supervised methods

The following limits are identified when using supervised methods for species

classification with DNA Barcode sequences:

� a full reference set of specimens species is necessary; at least 4 specimens per

species are suggested for building a reference library and the sequences of each

species have to include possibly all the nucleotide polymorphisms (variations); the

more specimens are available, the more accurate are the classification models, and

subsequently the results;

� when not using an adequate reference library, under-fitting or over-fitting

phenomena may occur (under-fitting may be present when an insufficient

number of specimens per species is given in the reference library, over-fitting

when too many sequences of one or more species are present in the library

and poor sampling is performed, i.e., not equal distributed specimens

for each species);

� scaling of algorithms is not warranted when dealing with thousands of species and

millions of specimens; this problem may be solved by sampling, i.e., selecting only

representative sequences for each species;

� no support is provided for multi-locus DNA Barcode sequences.

Results and discussion
Datasets

The classification comparative analysis is performed using a selection of published

empirical datasets and synthetic DNA Barcode datasets taken from [7,8,27] and

available for download at dmb.iasi.cnr.it/supbarcodes.php.

Empirical data

Public empirical datasets (available at GenBank Nucleotide Database) have been chosen

with the following properties: (i) sequences with high phylogenetic diversity; (ii)

identification complexity due to the absence of large inter-specific sequence differences;

and (iii) selection of different genomic compartments in the sequences.

The eight selected empirical datasets, summarized in Table 3, are the following.

Cypraeidae [29]: Cypraeidae (Mollusca) are taxonomically one of the most extensively

studied marine gastropods. The dataset comprises 2,008 DNA Barcode sequences with

a length of 618 bases and from 211 species, where 112 species are represented by 4 or

more sequences.



Table 3 Summary of the empirical datasets

Dataset #sequences Seq. length #species Gene region(s) Ref

Cypraeidae 2,008 614 211 COI [29]

Drosophila 615 663 19 COI [30]

Inga 913 1,838 56 tmTD, ITS [31]

Bats 826 659 82 COI [32]

Fishes 626 419 82 COI [27]

Birds 1,700 255 150 COI [33]

Fungi 50 510 8 ITS [4]

Algae 26 1,128 5 rbcL [3]

Legend: #Sequences = number of dataset sequences comprised in the dataset; Seq. length = length of the sequences;
#Species = number of species in the datasets; Gene Region(s) = gene region(s) used as Barcode for each dataset;
Ref = reference to original publication.
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Drosophila [30]: Drosophila is a thoroughly studied dataset characterized by an high

within-species divergence. The dataset is composed of 615 DNA Barcode sequences

of 19 species; their sequence length is 663 bases and 15 species have more than

five representing sequences.

Inga [31]: Inga (Fabaceae) is a large genus of tropical leguminous trees. Lots of

Inga species collected in southwestern Amazon are sorted in an incomplete DNA

Barcode tree. The dataset is made up of 913 DNA Barcodes of length 1,838. Such

sequences come from 56 species, 35 are represented by more than five sequences.

Bats [32]: The Bats dataset is composed of 826 barcode sequences from specimens

belonging to 82 different species. The sequences are taken from BOLD (Barcode Of

Life Database) [32] and come from the Kingdom Animalia, the Phylum Chordata,

the Class Mammalia, the Infraclass Eutheria, the Superorder Laurasiatheria and the

Order Chiroptera.

Fishes [27]: The Fishes dataset is composed of 626 recent barcode sequences from

specimens belonging to 82 different species. The Barcode sequences are obtained from

GenBank Nucleotide Database and mainly taken from the Kingdom Animalia, the

Phylum Chordata belonging to the commonly known paraphyletic group of the fishes.

Birds [33]: The Birds dataset is composed of 1,700 Barcode sequences from individuals

that belong to 150 different species. Each fragment contains between 648 and

690 nucleotides. It was provided by the CBOL in the 2007 Conference

(dimacs.rutgers.edu/Workshops/BarcodeResearchChallenges2007).

Fungi [4]: The Fungi dataset is composed of 50 sequences belonging to 8 different

species. The Barcode sequences are taken from the BOLD system [32] and come

from the Dikarya subkingdom.

Algae [3]: The Algae dataset is composed of 26 sequences belonging to 8 different

species. The Barcode sequences are taken from the BOLD system [32] and come

from the Haematococcaceae family of green algae.

Synthetic data

Real DNA Barcode datasets are simulated with Coalescent package in Mesquite version

2.75 (see the related work [8]). The data are simulated considering time of species

divergence and the effective population size (Ne), i.e., the number of individuals in a

population (of a species) that are contributing genes to the succeeding generations.

http://dimacs.rutgers.edu/Workshops/BarcodeResearchChallenges2007
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Firstly, according to the Yule coalescence model [8], gene trees with 1,000, 10,000, and

50,000 individuals of effective population size are simulated, generating datasets

composed of 50 species each of 20 individuals (Table 4). Each simulation is replicated

in a 100-fold scheme. The dataset complexity increases with population size. Then,

DNA Barcode sequences are simulated on the addictive gene trees, with a sequence

length of 650 bases, similar to the real size of a standard DNA Barcode.

Data sampling

The sequences of the empirical selected datasets are divided into a reference set (80%

per species), including the sequences with a priori assigned species membership, and a

query set (20% per species), comprising also the DNA Barcode sequences with an a

priori assigned species label (but not considered by the algorithm) for an evaluation of

the classification success. Also the synthetic DNA Barcode sequences are divided into

reference dataset and query dataset, which include 16 and 4 sequences for species,

respectively. It is worth noting that since species membership of query dataset is

simulated together with the reference dataset, they are also known, allowing a posteriori

evaluation of their identification accuracy.

The samplings, i.e., the divisions of reference and query set, are performed according

to the same data splits present in previous works [7,8,27] for allowing a comparison of

the classification results. These data splits were performed by biologists in [8], following

specific sequence compositions (e.g., polymorphism) and challenges (e.g., low species

divergences, not equal-distributed specimen for each species, and high intra-species

variability). Moreover, when possible each dataset is composed of species with 5 or more

representing sequences in the reference library.

Experimental settings

A typical experimentation procedure is described in this section. Moreover, a comprehen-

sive tutorial that guides the user during the software package downloads, set up, and the

execution of the experiments on its own datasets is provided as Additional file 1.

The supervised machine learning classification analysis of the eight selected empirical

datasets (Cypraeidae, Drosophila, Inga, Bats, Fishes, Birds, Fungi, Algae) is performed

according to the following steps:

1. the sequences are acquired from dmb.iasi.cnr.it/supbarcodes.php;

2. each dataset (reference and query) is converted in Weka ARFF format with the

special converter described previously in the Input, sequences conversion and output

section;

3. the supervised machine learning algorithms C4.5, Naïve Bayes, RIPPER, and SVM

are run in Weka;
Table 4 Summary of the synthetic datasets

Dataset Ne #individual Seq. length #species Ref

Ne1000 1,000 20 650 50 [8]

Ne10000 10,000 20 650 50 [8]

Ne50000 50,000 20 650 50 [8]

Legend: #Individual = number of sequences for each species; Seq. length = length of the sequences; #Species = number
of species in the datasets; Ref = reference to original publication.
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4. the specimen to species classification accuracies and the classification models are

evaluated.

The analysis of the selected synthetic datasets (Ne1000, Ne10000, Ne100000) is

performed according to the following steps:

1. the sequences are acquired from dmb.iasi.cnr.it/supbarcodes.php;

2. each dataset (reference and query) is converted in Weka ARFF format with the

special converter described previously in Input, sequences conversion and output

section;

3. the supervised machine learning algorithms C4.5, Naïve Bayes, RIPPER, and

SVM are run in Weka 100 times on different reference – query splits; special

scripts for performing a batch classification analysis in Weka have been

implemented and are available upon request;

4. the specimen to species classification accuracies and the classification models

are evaluated;

5. the average classification accuracies of the 100 runs are computed.

Moreover, the Multi-Layer Perceptron method [34] has been tested, however it

required a very high running time, not providing the demanded output even after hours

of computation. Therefore, the results have been not considered in the comparison.

To evaluate the performances of the algorithms, accuracy and standard deviation,

both weighted by the number of samples for each dataset, are considered. In addition,

as statistical test of differences among algorithms, the pairwise Wilcoxon signed rank

test based on paired observations [35] has been performed.

Parameter configurations

The supervised classification algorithms are tested using both the standard configur-

ation and a comprehensive parameter tuning (see the following Comparative Analysis

subsection for the obtained results). Specifically, the standard parameters for each ana-

lyzed method are listed in Additional file 2: Table S1.

Empirical sequences: classification analysis and results

Eight empirical DNA Barcode sequence datasets have been analyzed for classification

according to the steps described in the previous section.

The accuracies on the query set of all empirical datasets are listed in Table 5, as well

as the averaged accuracy with its standard deviation, both weighted by the number of

samples for each dataset. SVM and Naïve Bayes reach the highest classification perfor-

mances on all tested datasets. As expected, the statistical difference between SVM and

Naïve Bayes resulted not significant (p-value > 0.05) according to the pairwise Wilcoxon

test. On the other hand, the observed differences computed among SVM (Naïve Bayes)

and the other algorithms resulted statistically significant (p-value ≤ 0.001).

The detailed results of the supervised machine learning tested methods are shown for

the eight empirical datasets and the performances on query set and reference set for

each selected empirical dataset are drawn in Additional file 2: Figures S1-S8. Each

figure depicts results on empirical data through histograms that provide the accuracy



Table 5 Accuracies for the empirical datasets [%]

Dataset SVM Jrip J48 Naïve Bayes Average Standard deviation

Cypraeidae 94.32 86.93 91.76 93.18 91.55 2.82

Drosophila 98.28 94.83 91.38 96.55 95.26 2.55

Inga 89.83 88.14 88.14 91.53 89.41 1.41

Bats 100.00 100.00 98.15 100.00 99.54 0.80

Fishes 95.50 90.09 92.79 97.30 93.92 2.73

Birds 98.42 84.86 91.80 94.32 92.35 4.93

Fungi 80.00 50.00 60.00 70.00 65.00 11.20

Algae 100.00 60.00 60.00 100.00 80.00 20.00

Results of the Weka supervised learning methods tested on empirical datasets show that SVM and Naïve Bayes
outperform the other techniques in term of percentage of the correct species identification. The differences between
SVM and the other algorithms result statistically significant (p-value ≤ 0.001), except for Naive Bayes (p-value > 0.05). The
best performances are highlighted in bold for each dataset.

Weitschek et al. BioData Mining 2014, 7:4 Page 12 of 18
http://www.biodatamining.org/content/7/1/4
rate for all analyzed methods on the query set (panel (a) of each picture) and on the

reference set (panel (b) of each picture).

Synthetic sequences: classification analysis and results

Three synthetic DNA Barcode sequence datasets have been analyzed for the

classification according to the steps described in section Experimental settings.

The classification performances on query and reference sets of synthetic datasets with

Ne equal to 1,000, 10,000, and 50,000 are summarized in Table 6. The weighted average

accuracy on the query set is around 96% for both Ne equal to 1,000 and 10,000, and

91% for Ne equal to 50,000 (Table 6).

The results on the synthetic data are largely consistent with results on the empirical

ones: SVM and Naïve Bayes outperform the other methods. The statistical significance

(p-value ≤ 0.001) is proven by performing the pairwise Wilcoxon test among SVM

(Naïve Bayes) and the other algorithms with a Bonferroni correction [36] in order to

consider the high numbers of comparisons. In this case, also the performance

difference between SVM and Naïve Bayes is statistically significant (p-value ≤ 0.001).

The detailed performances are reported in Additional file 2: Figure S9, S10 and S11.

Each figure depicts results on synthetic data through histograms and bar-plots, in order

to highlight the averaged performances (panels (b) and (d) of each picture) together

with the standard deviation (panels (a) and (c) of each picture).

Comparative analysis

A comparative evaluation of the classification results is performed (i) using several

machine learning algorithms from the collection of Weka classifiers; (ii) using these
Table 6 Accuracies for the synthetic datasets [%]

Dataset SVM Jrip J48 Naïve Bayes Average Standard deviation

Ne1000 96.53 96.26 94.07 96.48 95.84 1.19

Ne10000 96.77 95.26 94.88 96.79 95.93 0.99

Ne50000 93.92 89.28 89.63 92.46 91.32 2.24

Results of the Weka supervised learning methods tested on synthetic datasets show that SVM and Naïve Bayes
outperform the other techniques in term of percentage of the correct species identification. The differences between
SVM and the other algorithms result statistically significant (p-value ≤ 0.001). The best performances are highlighted in
bold for each dataset.
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algorithms with different parameter configurations; and (iii) comparing the results with

ad-hoc and well-established DNA Barcode classification techniques, as phylogenetic

trees (NJ, PAR), similarity-based (BLAST), and character-based (DNA-BAR, BLOG)

methods. The results are compared evaluating accuracy and standard deviation, both

weighted by the number of samples for each dataset.

Supervised machine learning algorithm comparisons

The different Weka supervised machine learning algorithms are run on empirical and

synthetic data according to the steps previously described in section Experimental

setting.

The comparative evaluation of Weka classifiers shows that SVM and Naïve Bayes

methods outperform on average the other classifiers (Jrip, J48), both on empirical

(panel (a) of Figure 4) and synthetic (panel (b) of Figure 4) datasets, although a precise

and human interpretable classification model is not provided, as the one of rule-based

methods (e.g., Jrip). Note that the performance differences are statistically significant,

as explained in subsections Empirical (Synthetic) sequences: classification analysis

and results.

Default versus different parameter configurations of Weka classifiers

Different parameter settings of the supervised machine learning algorithms in Weka

have been tested on empirical data according to the steps described in section

Experimental settings. The standard classification performances of machine learning

methods on three selected empirical datasets (i.e., Cypraeidae, Drosophila and Inga) are

compared with respect to the ones obtained using other parameter configurations

(listed in Additional file 2: Table S2, S3, S4 for Cypraeidae, Drosophila and Inga,

respectively). The results of the comparative analysis for the three empirical datasets

are shown in Additional file 2: Figure S12-S14. No relevant differences among the

analyzed configurations appear, except for the configuration of Drosophila and Inga

when SVM uses a Logistic Model. Only three datasets are taken as representative
Figure 4 Weka supervised machine learning methods comparison. (a) The DNA Barcode query
identification success scores of SVM, Jrip, J48, Naïve Bayes tested on the eight empirical datasets are
depicted; (b) The DNA Barcode query identification success scores of SVM, Jrip, J48, Naïve Bayes tested on
the three synthetic datasets are depicted.



Weitschek et al. BioData Mining 2014, 7:4 Page 14 of 18
http://www.biodatamining.org/content/7/1/4
samples and analyzed using different parameters, as the classification results do not

substantially change when performing parameters tuning.

Weka algorithms versus DNA Barcodes ad-hoc classification methods

In this experimentation the empirical and synthetic datasets (Cypraeidae, Drosophila,

and Inga) have been analyzed with Weka supervised machine learning algorithms

according to the steps described in section Experimental settings and their accuracy has

been compared to previous results presented in [8].

Analysis results on empirical (Figure 5) and synthetic (Figure 6) datasets show that

two Weka classifiers (Naïve Bayes and SVM) reach on average the highest classification

performances with respect to the other ad-hoc DNA Barcode analysis methods

(although note that not all of them are statistically significant according to the

Wilcoxon test). However, Naïve Bayes and SVM do not provide a clear and compact

human interpretable classification model. Rule-based methods [37], as BLOG [7] and
Figure 5 Classification performances (accuracy) for the empirical datasets. (a) DNA Barcode query
identification success scores of Weka methods (SVM, Jrip, J48, Naïve Bayes) together with other ad-hoc
methods for DNA Barcode analysis (NJ, PAR, NN, DNA-BAR, BLAST, BLOG) applied to three empirical datasets
(i.e., Cypraeidae, Inga, and Drosophila) are depicted; (b) bar-plot of DNA Barcode query identification success
scores: the weighted accuracy of each method averaged over the samples of the three empirical datasets
and their standard deviations are depicted.



Figure 6 Classification performances (accuracy) for the synthetic datasets. (a) The DNA Barcode query
identification success scores of Weka methods (SVM, Jrip, J48, Naïve Bayes) together with ad-hoc DNA
Barcode analysis methods (NJ, PAR, NN, DNA-BAR, BLAST, BLOG) applied to the three synthetic Barcode
sequence datasets (i.e., Ne1000, Ne10000, Ne50000) are depicted; (b) bar-plot of the DNA Barcode query
identification success scores: the weighted accuracy of each method averaged over the samples of the
three synthetic datasets and their standard deviations are depicted.
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RIPPER [24], have lower classification performances, but the user is provided with the

diagnostic positions and the nucleotide assignments (e.g., “if pos40 = T and pos265 = T

then the specimen is classified as Ompok bimaculatus”). It is worth nothing that the

differences between SVM performances and character-based methods (DNA-BAR and

BLOG) are not statistically significant (p-value > 0.05).

Summarizing, on synthetic data the supervised machine learning methods outper-

form the ad-hoc DNA Barcode classification methods (Figure 6), although not all of

them results statistically significant according to the Wilcoxon test. On empirical data

the classification performances are comparable to the ad-hoc methods (Figure 5). The

empirical datasets taken into account for this comparison are only the Cypraeidae,

Drosophila, and Inga sequences, as tested in previous studies [8]. It is not surprising

that ad-hoc DNA Barcodes classification methods have slightly weaker performances

on synthetic data, as the sequences are generated to challenge these methods.
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Conclusions
This paper provides a comprehensive approach to the problem of assigning an

unknown specimen to a known species by analyzing its DNA Barcode. Such a task was

addressed using supervised classification algorithms implemented by the software tool

Weka. In particular, specific classifiers like the function-based method Support Vector

Machines (SVM), the rule-based RIPPER (Jrip), the decision tree C4.5, and the

Bayesian-based method Naïve Bayes were tested on synthetic and empirical datasets

belonging to the animal, fungus, and plant kingdoms. Additionally, an integrated

tool that converts the DNA Barcode FASTA sequences to the Weka format was

developed in order to adapt different input formats and hence to allow the

experiments execution.

Furthermore, the classification results were compared with respect to ad-hoc

and well-established DNA Barcode classification techniques, as phylogenetic trees

(NJ, PAR), similarity-based (BLAST), and character-based (DNA-BAR, BLOG)

methods. The classification analysis shows that supervised machine learning

methods are promising candidates for handling with success the DNA Barcode

species classification problem, obtaining excellent classification performances. On

empirical data the classification performances were comparable to the traditional

DNA Barcode classification methods, while on synthetic data higher classification

performances have been obtained. The results presented in this paper and those

available in previous literature establish the extensive validity of the application of

supervised learning methods for species classification with DNA Barcodes, testing

both the accuracy of different methods and of different dataset types. Finally, a

powerful tool and pipeline to perform species classification are provided to the

DNA Barcoding community.

An extension of the supervised classification procedure is planned as future work,

where the issue of specimen to species assignments with multi-locus DNA Barcode

sequences will be analyzed and addressed.
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