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Abstract

Reference datasets are often used to compare, interpret or validate experimental data
and analytical methods. In the field of gene expression, several reference datasets have
been published. Typically, they consist of individual baseline or spike-in experiments
carried out in a single laboratory and representing a particular set of conditions.

Here, we describe a new type of standardized datasets representative for the spatial
and temporal dimensions of gene expression. They result from integrating expression
data from a large number of globally normalized and quality controlled public
experiments. Expression data is aggregated by anatomical part or stage of
development to yield a representative transcriptome for each category. For example,
we created a genome-wide expression dataset representing the FDA tissue panel
across 35 tissue types. The proposed datasets were created for human and several
model organisms and are publicly available at www.expressiondata.org.

Background

Baseline or reference data are important for the analysis and interpretation of experi-
ments and for testing methods and algorithms. Two main types of baseline data exist: a)
measurements that serve as negative controls within a given experiment, and b) experi-
ments that were carried out for the purpose of creating a collection of default states. In
the first type, data from control samples (typically unperturbed samples) are necessary to
test the effect of individual factors in an experiment or to calibrate a technology or treat-
ment. In the second type, baseline datasets typically aim at compiling a large collection
of data points representative for development, anatomy, cancer or response to a particu-
lar condition. The main objective of the second type is to provide comparative value for
improved interpretation or for verification. In the present work, we consider the second
type of reference data.

The nature of what are considered to be appropriate baseline conditions depends on
community standards and on experimental design, but frequently they target unper-
turbed, healthy samples from a “wild-type” genetic background, or they represent a
collection of perturbed states as reference for one’s own data. Several distinct types of
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baseline gene expression data exist: tissue, cancer or development profiles (usually abso-
lute expression values), perturbations and diseases (relative values) and time courses and
dose responses (absolute or relative values), or a combination of these spatial, temporal
and response profiles. Examples of baseline data sets that have been published include
the GNF human tissue panel [1], The Cancer Genome Atlas [2], the rat liver and kid-
ney HESI baseline dataset [3], the NOWAC Postgenome Study [4], and the Arabidopsis
AtGenExpress datasets for abiotic stress [5], plant development [6], or hormonal and
chemical responses [7]. New technological platforms are also frequently assessed by gen-
erating data from control samples, resulting in baseline experimental datasets that can
subsequently be used as a reference on these platforms. For example, several normaliza-
tion methods for Affymetrix expression arrays have been benchmarked using the Latin
square spike-in data from Affymetrix [8]. Further examples of spike-in datasets are the
Golden Spike [9], Platinum Spike [10] and Agilent Spike [11] experiments to assess single
channel or dual channel microarrays, and a spike-in dataset used to map the mammalian
transcriptome using high-throughput RNA sequencing [12].

Most publicly available datasets originate from a single experiment with few inde-
pendent biological replicates and performed in a particular experimental setting. The
expression profiles of these samples therefore represent gene expression in that partic-
ular context, but it is not a priori clear whether these results are generally reproducible
in other contexts. Furthermore, it is not immediately visible whether similar results have
already been found previously or if they are novel. To verify these two questions requires
the availability of comparable experiments. Comparing one’s own expression profiles with
reference datasets composed of a variety of different experimental conditions allows inter-
preting similarities globally or at the level of individual gene signatures. It is clear that
the composition and robustness of the reference datasets used will have a major impact
on the outcome of such comparisons. It is therefore essential to create robust reference
datasets containing representative expression values for individual biological contexts.
Robustness and improved statistical power can be achieved through intensity-level inte-
gration of microarray data [13]. The quality of these profiles also depends on the quality
and granularity of the sample annotations. Here, we present a collection of reference
datasets based on average expression values generated from many samples originating
from a similar biological context. The annotations of each sample were manually verified
and their profiles were compared to other samples having the same annotations. The rea-
soning for this approach is that the expression of a set of genes in a specifically defined
condition is reproducible and, therefore, similar data sets can be combined to create a
representative profile. This concept, called meta-profiling, has been introduced in GEN-
EVESTIGATOR and has proven to be highly useful [14]. The approach works particularly
well for tissue types and cancers, since they are the main determinant of transcript popu-
lation [15]. It allows creating rich and robust datasets from the bulk of research data that
is publicly available for various applications, in particular for confirmation, classification
or interpretation of one’s own experimental results.

Construction and content

Data preparation

The new resource, called ExpressionData and available at www.expressiondata.org, pro-
vides reference datasets for human and several model organisms (mouse, Drosophila,
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Arabidopsis, rice, and yeast), for different technological platforms, and for a variety of
biological dimensions (tissue types, developmental stages, or time courses). The resource
primarily contains subsets of data that were generated from the GENEVESTIGATOR
expression compendium [14]. In brief, GENEVESTIGATOR is a high quality, manually
curated and well annotated compendium of expression data collected from a variety of
public repositories, including Gene Expression Omnibus [16] and ArrayExpress [17].
All samples were annotated using controlled vocabularies from ontologies for anatom-
ical parts, stages of development, perturbations (diseases, chemicals, hormones, etc),
genotypes (genetic background, over-expression, knock-down, knock-out, etc), and
neoplasms. The annotation of each experiment and sample was performed manually to
provide more detailed information, to detect annotation errors or redundant datasets
across published studies. Raw data was quality controlled and subsequently normalized
at two levels: 1) intra-experiment normalization using RMA, and 2) inter-experiment
normalization using global experiment scaling. This global normalization allows inte-
grating absolute expression values across hundreds of experiments. Therefore, it is
possible to calculate average vectors of expression from all samples from the same cate-
gory. Figure 1 shows the general process of data transformation, from the retrieval from
public repositories through data curation to the summarization of expression vectors
into representative datasets. While the online tool GENEVESTIGATOR allows scientists
to explore the global curated content to identify significant biological effects, selected
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Figure 1 Data transformation process from public repositories to unified data queried by
GENEVESTIGATOR or to reference datasets available at www.expressiondata.org. A. Manual curation
of public data, including sample annotation using ontologies, statistical quality control of samples and
experiments, and data normalization. B. Storage of high quality standardized expression experiments in the
GENEVESTIGATOR database. €. Aggregation of expression data according to categories of anatomical parts,
celllines, neoplasms, perturbations (including diseases, drugs and genotypes) and stages of development.
While all datasets are available through GENEVESTIGATOR, selected compilated reference datasets such as for
anatomy or development are made publicly available through www.expressiondata.org.
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post-processed reference datasets from GENEVESTIGATOR are made freely available
www.expressiondata.org.

The datasets chosen for the ExpressionData resource were typically generated from
hundreds of experiments. For each anatomy or development category we calculated a rep-
resentative vector of expression (meta-profile) for all probe sets from a given microarray
platform. For example, all 616 human samples hybridized on the Affymetrix Human133
Plus 2.0 array and which were annotated as “liver” were combined into a single mean
expression vector representing the tissue “liver”. We assume that this summarization into
meta-profiles generates biologically representative expression vectors. As a proof of con-
cept, we performed a Principle Component Analysis of the anatomy meta-profiles of 31
different mouse tissue types. The projections show a biologically meaningful clustering of
related tissue types (Figure 2), even if they were composed of data generated in different
laboratories and under different experimental conditions. Almost identical clusters are
obtained when clustering the tissue meta-profiles of human or rat data, revealing a high
representativeness of the data [15].

The datasets made available at ExpressionData represent a carefully chosen subset of
platforms and conditions from the complete GENEVESTIGATOR database. The criteria
for selecting a particular condition were defined as follows:

e Anatomy: each tissue type is represented by data from at least two independent
experiments and at least 30 replicates;

e Development: all expression data available for each category is aggregated into an
average vector per category.

Datasets representing spatial expression
The knowledge about the spatial expression characteristics of genes is crucial for under-
standing their function and regulation. Representative vectors of expression in tissue
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Figure 2 Principle component analysis of mouse tissues and organs (Left figure: components 1 versus
2; right figure: components 1 versus 3). Major organ systems are colored, while individual tissues are
numbered as follows: (1) cell culture / primary cell, (2) fibroblast, (3) myoblast, (4) adipocyte, (5) hindlimb
skeletal muscle, (6) gastrocnemius, (7) muscle skeletal muscle, (8) diaphragm, (9) heart, (10) heart ventricle,
(11) heart left ventricle, (12) haemolymphoid system, (13) blood, (14) leukocyte (white blood cell), (15)
thymus, (16) integumental system, (17) mammary gland (breast), (18) telencephalon (cerebrum), (19) cerebral
cortex (neopallium), (20) hippocampus, (21) cerebellum, (22) eye, (23) intestine, (24) liver, (25) reproductive
system, (26) testis (male gonad), (27) lung, (28) endocrine system, (29) pancreas, (30) adipose tissue (fat), (31)
bone marrow, (32) mean of all tissues.
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types were processed from a very large number of samples carried out in at least two
independent laboratories under a variety of conditions. Since all datasets are normalized
to allow integrating datasets from multiple sources, a large number of samples from dif-
ferent tissues can be compiled into a single data set where each row represents one gene
and each column represents one tissue.

To demonstrate the biological validity of tissue meta-profiles, we carried out a princi-
ple component analysis of a mouse tissue expression dataset which had been summarized
from more than 3000 Affymetrix array datasets available in GENEVESTIGATOR. The
results show a clear grouping of tissues that are functionally related (see Figure 2).
The first principle component separates distinctly all central nervous system tissues
from all other body parts. The second principle component groups all other tissues
into clusters of anatomical parts that have a common origin or physiology. For exam-
ple, a variety of muscle tissues form a distinct cluster that is located close to heart and
heart ventricle tissues. These results confirm previous findings on comparing human
and mouse tissues based on datasets that were normalized differently and in which tis-
sue samples are represented individually [18]. Differences between the individual vectors
therefore primarily reflect fundamental biological processes that are associated with each
tissue type. The anatomical datasets available at www.expressiondata.org have a care-
fully selected coverage of tissue types, each of them represented by a single vector of

expression.

Datasets representing developmental expression

For model organisms such as Drosophila or mouse, datasets covering multiple stages of
development represent an interesting source of scientific information. Here, we generated
representative expression vectors for each stage of development as the mean of all sam-
ples annotated with a given developmental stage ontology category. Each developmental
stage is represented by a variety of tissues and conditions occurring at that stage and
which are available in the GENEVESTIGATOR database. To illustrate the use of summa-
rized datasets for development, we created meta-profiles for mouse and Drosophila and
clustered them using PCA (Figure 3). For mouse, the order by which the stages appear on
the projections is chronological, from the oocyte stage up to the adult mouse. The results
for Drosophila show three main clusters consisting of a) the instar larvae stages, pre-pupa
and adult fly, b) the germ band elongation and retraction stages, and c) the pupa itself.
One can distinguish two axes representing embryo and pupal development, respectively.
Similarly, mouse development appears to follow two axes, as determined by the two prin-
ciple components, dividing pre-natal and post-natal processes. The post-natal stages are
almost linearly aligned and in the correct biological chronological order, suggesting that
expression vectors aggregated from many independent experiments contain biologically
representative data.

Other datasets

Meta-profile data for anatomy and development provide an excellent basis for genomic
data interpretation. For many biological questions, however, it is desirable to look beyond
the spatio-temporal aspects of gene expression. Many organisms undergo time-related
regulation, especially circadian. The ExpressionData resource therefore contains further
datasets of particular biological relevance. Two of them are presented here.
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Figure 3 Principle component analysis of Drosophila and mouse developmental stages. The

expression vector for each stage represents an average from all samples annotated as belonging to that
stage of development. Results were processed from data generated with the Affymetrix microarray platforms

Drosophila Genome 2.0 (1431 samples) and Murine Genome U74Av2 (2357 samples).

Datasets with biological oscillations

Many biological processes are repetitive or timed, leading to oscillations in their regu-
lation. Two typical examples of oscillatory behaviour are circadian rythms and the cell
cycle. In ExpressionData, several public experiments having at least one complete oscil-
lation were curated and are made available. For example, the Arabidopsis circadian clock
experiment available at NASC under experiment ID NASCARRAYS-196 (http://www.
ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE5612) is a series of Arabidopsis samples col-
lected at 2 hours interval over a period of 48 hours and across two different schemes of

day/night entrainment. As an example, Figure 4 shows three marker genes for circadian

regulation across these samples.
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Figure 4 Oscillatory pattern of expression in Arabidopsis. A) Three genes with different patterns of
oscillation are shown: CCA1 (AT2G46830; circadian clock associated 1; in red), CCR1 (AT1G15950; cinnamoyl
coa reductase 1;in green), and CAT3 (AT1G20620; Catalase 3, in blue). Signal values represent expression
levels as normalized using RMA. Open circles represent expression not significantly above background (p >
0.06, as obtained from the MASS5 p-values for detection calls). B) Twelve genes with different phase shifts in
the circadian oscillation pattern relative to the first gene. Genes were clustered in GENEVESTIGATOR using
Hierarchical Clustering with optimal leaf ordering.

Datasets with time-courses

Time-course datasets are useful to identify trends and to measure the rapidity of response
to a given perturbation or developmental process. This type of data is also interesting for
the development of methods to identify such trends. Here, we show an example of a time-
course dataset that, as opposed to the circadian dataset, was used to identify genes having
no circadian response.

The response to cold stress is a highly conserved defense mechanism by which plants
protect their viability [19]. The cold stress response can be an attractive mechanism to
modulate the expression and production of recombinant protein in plants without usage
of chemical inducers, but via relatively inexpensive and controllable stimuli.

The dataset considered in this section was generated by harvesting leaves of 6 week
old greenhouse-grown tobacco (Nicotiana tabacum) plants from the relatively cold-
intolerant Flue-Cured variety K326. Leaves were quickly chilled for 10 minutes in a blast
chiller at a temperature between 0-5°C and monitored to avoid frost. Then, the samples
were incubated at the same temperature for 5 hours or 24 hours before being frozen in lig-
uid nitrogen. Two harvesting times, one in the morning (7:30am) and one in the afternoon
(1:00pm) were chosen in order to avoid circadian effect. Two sets of control leaves were
harvested together with the cold-treated samples and frozen immediately in liquid nitro-
gen (Time 0). Three biological replicates were prepared for each time point. Unlike in the
previously described datasets focused on biological oscillations, the objective of this type
of studies is to find genes that are continuously induced by cold treatment over the time
period of 24 hours independently of harvesting time of the seedlings (i.e. biological oscil-
lation between morning and afternoon do not interfere with the gene inductions). The
raw data from this experiment are available in Gene Expression Omnibus (GEO) under
accession Nr. GSE44938.
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Figure 5 shows a typical behavior of two non-circadian early induced genes. Figure 5A
describes the cold induction of a gene identified by the Tobacco Exon Array probeset NtP-
Mlalg41395el [20]. This exon is induced 16-fold and annotated as similar to At5g51990,
or CBF4/DREB1D (C-repeat-binding factor 4/dehydration-responsive element-binding
protein 1D). CBF4 is reported to be a transcription factor key responder to low tem-
peratures [21] in different higher plants (Arabidopsis [22], cereals [23,24], grapevine
[25,26]). Figure 5B depicts the dynamics of induction of a gene annotated as Ethylene-
Responsive element binding protein ERF2 (probeset numbers NtPMIalg55583el_st
and NtPMIalg55583e2_st from Tobacco Exon Array [20]). The expression of the gene
achieves 8-fold at 5 hours and 16-fold increase in 24 hours. The ERF family of genes is
known to be differentially regulated in Arabidopsis [27], soybean [28], tomato and tobacco
[29] by abiotic stress conditions including wounding and cold: the induction of this gene
in our experiment in fact is most likely due to the double stimulus wound/cold following
harvesting and cold treatment procedures.

Microarray data experiments such as this may lead to the discovery of regulative ele-
ments which serve as powerful tools for expression of commercially valuable recombinant
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Figure 5 Non-circadian time course gene expression of two early cold-induced exons. A. Putative
C-repeat-binding factor 4/dehydration-responsive element-binding protein 1D (CBF4/DREB1D) B. Putative
Ethylene-Responsive element binding ERF2.
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proteins in plants, and which are not circadian-sensitive. They may also lead to the iden-
tification of new unknown genes which could be targeted for selection of cold tolerant

varieties.

Utility

The datasets presented here are examples of curated and aggregated datasets of gene
expression covering a broad range of biological conditions. We have created reference
data sets that can be used for

e Interpreting results from other studies. The created expression compendia, such as
for anatomical parts, are representative for individual biological states and allow
comparisons with expression data obtained in other experiments.

e Finding novel gene regulatory modules and networks from aggregated datasets
containing a high diversity of tissues and developmental stages.

e Testing bioinformatics methods or algorithms with manually curated and biologically
relevant data.

The results shown here and on the www.expressiondata.org website demonstrate the
biological relevance of such datasets. In fact, the results in Figure 2 and examples from
the www.expressiondata.org website demonstrate that the compiled data contain robust
and representative estimates for individual biological states such as tissue types or stages
of development. In particular, a high concordance was found in the tissue transcriptomes
between human and mouse by comparing aggregated expression data for each organism
across the same set of tissues. While the ExpressionData resource is expected to grow as
new datasets are processed and made available, it does not aim at having complete sets of
data for every organism.

Conclusions

ExpressionData is a new source of tested, high quality, manually curated, globally normal-
ized and aggregated expression data ready for use in a variety of data interpretation and
verification tasks. It is expected to simplify the search for robust and high quality datasets
and to provide a set of reference data for comparison. Its content is open access and freely
available for download at www.expressiondata.org.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
All authors were involved in data collection, data processing and creating the resource. PZ, SB, OL, NVI, FM and WG wrote
the manuscript. All authors read and approved the final manuscript.

Acknowledgements

We acknowledge support of our research from the European Union (EU Framework Program 6, AGRON-OMICS
(LSHG-CT-2006-037704)), the Swiss Commission for Technology and Innovation (CTl, grants 9428.1 PFLS-LS and 12396.1
PFLS-LS), from ETH Zurich and from Philip Morris International.

Author details

Department of Biology, ETH Zurich, 8092 Zurich, Switzerland. 2Institute of Theoretical Computer Science, ETH Zurich,
8092 Zurich, Switzerland. >NEBION AG, Hohlstrasse 515, 8048 Zurich, Switzerland. “Philip Morris International R&D, Quai
Jeanrenaud 5, 2003 Neuchatel, Switzerland.


www.expressiondata.org
www.expressiondata.org
www.expressiondata.org

Zimmermann et al. BioData Mining 2014, 7:18 Page 10 of 11
http://www.biodatamining.org/content/7/1/18

Received: 21 May 2013 Accepted: 13 August 2014
Published: 31 August 2014

References

1.

19.
20.

21.

22.

23.

24.

25.

26.

Su Al, Cooke MP, Ching KA, Hakak Y, Walker JR, Wiltshire T, Orth AP, Vega RG, Sapinoso LM, Mogrich A, Patapoutian A,
Hampton GM, Schultz PG, Hogenesch JB: Large-scale analysis of the human and mouse transcriptomes. Proc
Natl Acad Sci USA 2002, 99:4465-4470.

Weinstein JN, Collisson EA, Mills GB, Shaw KR, Ozenberger BA, Ellrott K, Shmulevich |, Sander C, Stuart JM, Chang K,
Creighton CJ, Davis C, Donehower L, Drummond J, Wheeler D, Ally A, Balasundaram M, Birol |, Butterfield SN, Chu A,
Chuah E, Chun HJ, Dhalla N, Guin R, Hirst M, Hirst C, Holt RA, Jones SJ, Lee D, Li HI, et al: The cancer genome Atlas
pan-cancer analysis project. Nat Genet 2013, 45(10):1113-1120.

Boedigheimer M, Wolfinger R, Bass M, Bushel P, Chou J, Cooper M, Corton JC, Fostel J, Hester S, Lee J, Liu F, Liu J,
Qian HR, Quackenbush J, Pettit S, Thompson K: Sources of variation in baseline gene expression levels from
toxicogenomics study control animals across multiple laboratories. BMC Genomics 2008, 9:285.

Dumeaux V, Olsen KS, Nuel G, Paulssen RH, Brresen-Dale AL, Lund E: Deciphering normal blood gene expression
variation the NOWAC postgenome study. PLoS Genet 2010, 6:21000873. [http://dx.doi.org/10.1371]

Kilian J, Whitehead D, Horak J, Wanke D, Weinl S, Batistic O, D'Angelo C, Bornberg-Bauer E, Kudla J, Harter K: The
AtGenExpress global stress expression data set: protocols, evaluation and model data analysis of UV-B
light, drought and cold stress responses. Plant J 2007, 50(2):347-363.

Schmid M, Davison TS, Henz SR, Pape UJ, Demar M, Vingron M, Scholkopf B, Weigel D, Lohmann JU: A gene
expression map of Arabidopsis thaliana development. Nat Genet 2005, 37:501-506.

Goda H, Sasaki E, Akiyama K, Maruyama-Nakashita A, Nakabayashi K, Li W, Ogawa M, Yamauchi Y, Preston J, Aoki K,
Kiba T, Takatsuto S, Fujioka S, Asami T, Nakano T, Kato H, Mizuno T, Sakakibara H, Yamaguchi S, Nambara E, Kamiya Y,
Takahashi H, Hirai MY, Sakurai T, Shinozaki K, Saito K, Yoshida S, Shimada Y: The AtGenExpress hormone and
chemical treatment data set: experimental design, data evaluation, model data analysis and data access.
Plant J 2008, 55(3):526-542.

Latin Square data for Expression Algorithm Assessment. [http://www.affymetrix.com/support/technical/
sample_data/datasets.affx]

Choe SE, Boutros M, Michelson AM, Church GM, Halfon MS: Preferred analysis methods for Affymetrix
GeneChips revealed by a wholly defined control dataset. Genome Biol 2005, 6:R16.

Zhu Q, Miecznikowski JC, Halfon MS: Preferred analysis methods for Affymetrix GeneChips. Il. An expanded,
balanced, wholly-defined spike-in dataset. BVC Bioinformatics 2010, 11:285.

Zhu Q, Miecznikowski JC, Halfon MS: A wholly defined Agilent microarray spike-in dataset. Bioinformatics 2011,
27:1284-1289.

Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B: Mapping and quantifying mammalian transcriptomes
by RNA-Seq. Nat Methods 2008, 5:621-628.

Turnbull AK, Kitchen RR, Larionov AA, Renshaw L, Dixon JM, Sims AH: Direct integration of intensity-level data
from Affymetrix and lllumina microarrays improves statistical power for robust reanalysis. BMC Med
Genomics 2012, 5:35.

Hruz T, Laule O, Szabo G, Wessendorp F, Bleuler S, Oertle L, Widmayer P, Gruissem W, Zimmermann P:
Genevestigator v3: a reference expression database for the meta-analysis of transcriptomes.

Adv Bioinformatics 2008, 2008:420747.

Prasad A, Kumar SS, Dessimoz C, Bleuler S, Laule O, Hruz T, Gruissem W, Zimmermann P: Global regulatory
architecture of human, mouse and rat tissue transcriptomes. BMC Genomics 2013, 14:716.

Barrett T, Troup DB, Wilhite SE, Ledoux P, Evangelista C, Kim IF, Tomashevsky M, Marshall KA, Phillippy KH, Sherman
PM, Muertter RN, Holko M, Ayanbule O, Yefanov A, Soboleva A: NCBI GEO: archive for functional genomics data
sets-10 years on. Nucleic Acids Res 2011, 39:D1005-1010.

Parkinson H, Sarkans U, Kolesnikov N, Abeygunawardena N, Burdett T, Dylag M, Emam |, Farne A, Hastings E,
Holloway E, Kurbatova N, Lukk M, Malone J, Mani R, Pilicheva E, Rustici G, Sharma A, Williams E, Adamusiak T,
Brandizi M, Sklyar N, Brazma A: ArrayExpress update-an archive of microarray and high-throughput
sequencing-based functional genomics experiments. Nucleic Acids Res 2011, 39:D1002-1004.

Zheng-Bradley X, Rung J, Parkinson H, Brazma A: Large scale comparison of global gene expression patterns in
human and mouse. Genome Biol 2010, 11:R124.

Yadav SK: Cold stress tolerance mechanisms in plants. A review. Agronomy Sustainable Dev 2010, 30(3):515-527.
Martin F, Bovet L, Cordier A, Stanke M, Gunduz |, Peitsch MC, Ivanov NV: Design of a tobacco exon array with
application to investigate the differential cadmium accumulation property in two tobacco varieties. BMC
Genomics 2012, 13:674.

Zhou M, Shen C, Wu L, Tang K, Lin J: CBF-dependent signaling pathway: a key responder to low temperature
stress in plants. Crit Rev Biotechnol 2011, 31(2):186-192.

Wang Y, Hua J: A moderate decrease in temperature induces COR15a expression through the CBF signaling
cascade and enhances freezing tolerance. Plant J 2009, 60(2):340-349.

Mao D, Chen C: Colinearity and Similar Expression Pattern of Rice DREB1s Reveal Their Functional
Conservation in the Cold-Responsive Pathway. P/oS one 2012, 7(10):e47275.

Knox AK, Dhillon T, Cheng H, Tondelli A, Pecchioni N, Stockinger EJ: CBF gene copy number variation at frost
resistance-2 is associated with levels of freezing tolerance in temperate-climate cereals. TAG Theor Appl Genet
2010, 121:21-35.

Fernandez-Caballero C, Rosales R, Romero |, Escribano MI, Merodio C, Sanchez-Ballesta MT: Unraveling the roles of
CBF1, CBF4 and dehydrin 1 genes in the response of table grapes to high CO<sub>2</sub> levels and low
temperature. J Plant Physiol 2012, 169(7):744-748.

SIDDIQUA M, NASSUTH A: Vitis CBF1 and Vitis CBF4 differ in their effect on Arabidopsis abiotic stress
tolerance, development and gene expression. Plant Cell Environ 2011, 34(8):1345-1359.


http://dx.doi.org/10.1371
http://www.affymetrix.com/support/technical/sample_data/datasets.affx
http://www.affymetrix.com/support/technical/sample_data/datasets.affx

Zimmermann et al. BioData Mining 2014, 7:18 Page 11 of 11
http://www.biodatamining.org/content/7/1/18

27. Fujimoto SY, Ohta M, Usui A, Shinshi H, Ohme-Takagi M: Arabidopsis ethylene-responsive element binding
factors act as transcriptional activators or repressors of GCC box-mediated gene expression. Plant Cell Online
2000, 12(3):393-404.

28. Zhang G, Chen M, Chen X, Xu Z, Guan S, Li LC, Li A, Guo J, Mao L, Ma Y: Phylogeny, gene structures, and
expression patterns of the ERF gene family in soybean (Glycine max L.). J £xp Botany 2008, 59(15):4095-4107.

29. Zhang Z, Huang R: Enhanced tolerance to freezing in tobacco and tomato overexpressing transcription
factor TERF2/LeERF2 is modulated by ethylene biosynthesis. Plant Mol Biol 2010, 73(3):241-249.

doi:10.1186/1756-0381-7-18
Cite this article as: Zimmermann et al.: ExpressionData - A public resource of high quality curated datasets
representing gene expression across anatomy, development and experimental conditions. BioData Mining 2014 7:18.

Submit your next manuscript to BioMed Central
and take full advantage of:

* Convenient online submission

® Thorough peer review

* No space constraints or color figure charges

¢ Immediate publication on acceptance

¢ Inclusion in PubMed, CAS, Scopus and Google Scholar

* Research which is freely available for redistribution

Submit your manuscript at ( -
www.biomedcentral.com/submit BiolMed Central




	Abstract
	Background
	Construction and content
	Data preparation
	Datasets representing spatial expression
	Datasets representing developmental expression
	Other datasets
	Datasets with biological oscillations
	Datasets with time-courses

	Utility
	Conclusions
	Competing interests
	Authors' contributions
	Acknowledgements
	Author details
	References

