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Abstract

Results: We found a statistically significant synergistic interaction among two SNPs
located in the intergenic region of an olfactory gene cluster. This model did not
replicate in an independent dataset. However, genes in this region have
high-confidence biological relationships and are consistent with previous findings
implicating sensory processes in Alzheimer's disease.

Conclusions: Previous genetic studies of Alzheimer's disease have revealed only a
small portion of the overall variability due to DNA sequence differences. Some of this
missing heritability is likely due to complex gene-gene and gene-environment
interactions. We have introduced here a novel bioinformatics analysis pipeline that
embraces the complexity of the genetic architecture of Alzheimer’s disease while at
the same time harnessing the power of functional genomics. These findings
represent novel hypotheses about the genetic basis of this complex disease and
provide open-access methods that others can use in their own studies.

Findings

Alzheimer’s disease (AD) is a progressive brain disorder and the most common form
of dementia. Genetic studies have revealed a number of polymorphisms associated
with risk of Alzheimer’s disease. Many of these are summarized in the online AlzGene
database (http://www.alzgene.org/) [1]. However, there are many additional genetic risk
factors that have not been discovered using standard association methods with Alzheimer’s
disease as a discrete endpoint. One approach is to use neuroimaging methods to measure
brain structure and function as endophenotypes for Alzheimer’s disease. The working hy-
pothesis is that measures of brain structure will make it easier to identify some of the un-
discovered genetic risk factors for Alzheimer’s disease. The goal of the present study was to
reanalyze genome-wide association study (GWAS) data from the Alzheimer’s Disease
Neuroimaging Initiative (ADNI) using grey matter density as an endophenotype. More spe-
cifically, we present a bioinformatics approach that considers the joint effects of all
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polymorphisms and their aggregation in biologically-defined pathways. Moving beyond
the standard one-polymorphism-at-a-time analysis paradigm will allow the formulation of
new hypotheses about the genetic architecture of late-onset Alzheimer’s disease.

Data

The data used in this study comes from the Alzheimer’s Disease Neuroimaging Initiative
(ADNI), which began on October 1, 2004 [2]. The stated goal of this multisite study is to
define the rate of progress of mild cognitive impairment and Alzheimer’s disease in order
to create better treatments for these conditions. The study carried out functional magnetic
resonance imaging (fMRI) every six to twelve months for 818 patients. A total of 733 with
genetic data across three categories were studied here: 204 who are neurotypical, 354 with
mild cognitive impairment, and 175 with Alzheimer’s disease. A total of 530,992 single-
nucleotide polymorphisms (SNPs) were measured across the human genome and passes
quality control as part of a previous genome-wide association study (GWAS) [3]. The
combination of brain imaging and GWAS data makes it possible to carry out voxel-wise
genome-wide association studies (VGWAS) creating a many-to-many mapping problem
[4]. In addition to the individual voxels, there are many different phenotypes that can be
extracted from the brain images. Here, we analyzed grey matter density to identify new
candidate genes for Alzheimer’s disease. The details of the genotypic and phenotypic data
has been previously described [3].

A bioinformatics pipeline

The motivation for this analysis approach is to identify gene-gene interactions in
Alzheimer’s disease that are not predicted by univariate effects. We combine powerful
machine learning methods for detecting synergistic interactions with functional genom-
ics data to reduce the likelihood of identifying false-positive results. Figure 1 provides
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Figure 1 An overview of our bioinformatics analysis pipeline. In phase | we focus on identifying those
genes with statistically significant pairs of SNPs that are associated with the phenotype. These genetic
effects can be additive or non-additive for each genes. The goal of Phase Il was to use bioinformatics
analysis with functional genomics data to reduce the possibility of false-positive results. A final genetic
model is constructed and interpreted.
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an overview of our bioinformatics analysis pipeline. All methods are implemented in
freely available software packages making this analysis accessible to anyone with basic
bioinformatics skills. The goal of Phase I was to carry out a joint analysis of all pairs of
SNPs within each gene (i.e. gene-level analysis) to allow identification of both additive
effects and non-additive genetic interaction effects. The goal of Phase II of the analysis
was to use a bioinformatics approach with functional genomics data (i.e. pathway-level
analysis) to further address the possibility of false-positives followed by a final QMDR
analysis to assess gene-gene interactions.

Phase I: SNP-SNP interaction analysis

We first mapped each of the SNPs from the GWAS to individual genes using a window
of 500 kb upstream and downstream from the gene sequence. This window size was se-
lected to capture as many regulatory SNPs as possible without assigning any one SNP
to too many different nearby genes as has been previously used for these kinds of stud-
ies [5]. Next, we carried out an exhaustive joint SNP analysis within each gene region
using the Quantitative Multifactor Dimensionality Reduction (QMDR) method. MDR is
a nonparametric and genetic model-free machine learning approach for detecting gen-
etic associations that exhibit additive or non-additive effects [6]. MDR uses a construct-
ive induction approach to map genotypes combinations from two or more SNPs to a
new single variable that makes interactions easier to detect [7]. The QMDR extension
allows modeling of quantitative traits such as grey matter density by collapsing multilo-
cus genotypic means into those above and those below the global mean [8]. The means
of the two new groups are then compared using a two-sample t-test. In this stage of
the analysis we ran QMDR only on all pairs of SNPs within a gene region. The most in-
formative pair of SNPs for each gene was selected and the statistical significance of
their corresponding QMDR models determined using a 1000-fold permutation test.
The p-value of this pair of SNPs was used to assign a p-value to its corresponding gene.
We used a significance level of 0.001 to select genes for the next step of the analysis.
This significance level was selected to minimize type II error (false-negatives) while
providing moderate control of type I error (false-positives) due to multiple testing. At
this stage of the analysis we were more concerned about type II errors than type I er-
rors. We further address the possibility of false-positives in the Phase II analysis using
functional genomics data and bioinformatics analysis.

Phase II: functional genomics analysis

The list of genes selected in Phase I were used as input for the integrative multi-species
prediction (IMP) webserver (http://imp.princeton.edu) that infers gene relationships
using a Bayesian analysis of functional genomics data including thousands of publically
available gene expression datasets [9]. The ultimate goal of this analysis is reduce the
likelihood of including false-positive genes from the statistical analysis in phase I by fo-
cusing on those genes with strong biological evidence for biological interaction. For this
analysis we used a very high confidence level of 0.9 for inferring that any two genes are
functionally connected. We also allowed IMP to add up to 20 additional genes in the
network that were connected to our list of genes with a high confidence. This is a
standard option in the software. The output of IMP is a functional gene-gene
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interaction network. In addition, IMP performs a gene set enrichment analysis on the
genes in the network to identify those pathways with more genes than expected by chance.
We used a statistical significance level of 0.05. A final list of genes appearing in the IMP
network and the significantly enriched pathways were selected for final analysis with
QMDR. Here, we used QMDR to model all pairwise, three-way and four-way gene-gene
interactions among the SNPs in this gene list that were identified in Phase I. Finally, we
assessed the nature of the gene-gene interactions (i.e. independent, redundant or synergis-
tic) from the QMDR results by performing entropy-based analyses [10,11] using the
visualization of statistical epistasis networks (ViSEN) software package [12].

Results and discussion

Using QMDR, phase I of the analysis revealed a total of 20 genes with 34 unique SNPs
that passed the statistical significance threshold for SNP-SNP interactions (p < 0.001). The
functional relationships of these 20 genes were inferred in Phase II using a bioinformatics
approach that considers the correlation of gene pairs across thousands of gene expression
datasets in addition to other information such as protein-protein interactions. In addition,
a gene set enrichment analysis was performed to determine whether genes appearing in
the functional network occurred more frequently than expected by chance in particular
biological processes as defined by Gene Ontology. This latter analysis revealed enrichment
for three visual perception pathways (p < 0.05) representing three genes from the gene net-
work (CACNAIC, FKBP4, and TRPC4) as well as two pathways for DNA repair and repli-
cation (p < 0.05) representing two genes (MCM5, MCM?7). An additional five genes from
the olfactory pathway were present in the gene network (OR8K1, OR8K3, ORSKS5,
OR5R1, and OP8U1). Thus, the Phase II bioinformatics and functional genomics analysis
reduced the list of 20 genes identified in Phase I to just six. Four additional genes were
added in the gene network analysis based on their functional relationships for a total of 10
genes. Only 10 SNPs were present in these genes due to some SNPs mapping to more
than one nearby gene. In fact, the same two SNPs represented all five olfactory genes be-
cause they are all clustered together within the 500 kb windows that were used.

An exhaustive QMDR analysis of the 10 SNPs revealed an overall best model consist-
ing of three SNPs (rs661090, rs12222334, and rs1570612). This model was significant
based on a 1000-fold permutation test (p <0.001). The first two SNPs are located in
intergenic regions within the olfactory gene cluster while the third is located in an in-
tron of the TRPC4 gene. It is important to note that we tried and failed to replicate this
finding in an independent ADNI cohort of similar size. Lack of replication could be
due to different data collection methods between the two studies [13] or other factors
such as differences in allele frequencies that are known to significantly impact the repli-
cation of gene-gene interactions [14].

The ViSEN analysis of these SNPs revealed that that the two olfactory SNPs had a
very strong synergistic interaction in the absence of strong independent effects while
the TRPC4 SNP appeared to have an effect on grey matter density that was independ-
ent of the other two (Additional file 1: Figure S1). Further, there was no evidence of
correlation or linkage disequilibrium in the ViSEN analysis. Interestingly, the olfactory
genes all had high-confidence functional relationships with at least one other olfactory
gene suggesting that the observed synergistic effect on grey matter density might have
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a functional genomics basis. This is an important supporting biological piece of evi-
dence. In addition, it is known that sensory processing, especially the sense of smell, is
among the first aspects to disappear at the onset of Alzheimer’s Disease [15-20]. Inter-
estingly, copy number variants in the olfactory gene region have been previously associ-
ated with age at onset of Alzheimer’s disease [21]. Our study is consistent with the idea
that olfactory genes might play a role in the genetic architecture of Alzheimer’s disease
thus making it a stronger hypothesis that needs to be further tested.

Limitations

We presented here a bioinformatics pipeline for identifying gene-gene interactions in
Alzheimer’s disease. As with any pipeline, a number of analysis decisions had to be
made. For example, we selected a significance level of 0.001 in the phase I analysis and
a confidence limit of 0.9 in the phase II analysis. These were selected to place more em-
phasis on using biological interactions to reduce false-positives due to multiple testing.
Others might prefer to put emphasis on more stringent statistical criteria thus relying
on statistical hypothesis testing for revealing true patterns. For example, a significance
cutoff of 0.00001 in phase I would have eliminated the SNPs that were identified in our
final best model. These are decisions that each user of the method will need to make
based on their own experience and their own concerns about false-positives and power.
In addition, it is important to qualify the p-value of less than 0.001 from the permuta-
tion testing for the final QMDR analysis since it is not entirely independent of the
QMDR analyses performed in the first phase. The reader may want to take this into
consideration when interpreting the final significance. Finally, although we modeled
two-way and three-way interactions in this study it is possible that the genetic architec-
ture of Alzheimer’s disease is even more complex with higher-order gene-gene and
gene-environment interactions. As such, it is possible that our study is overly simplistic
and that more advanced methods might be necessary.

Availability

The MDR software package is freely available from the authors. More information
can be found at http://www.epistasis.org. The IMP software is freely available at imp.
preinceton.edu.

Additional file

Additional file 1: Figure S1. A SNP-SNP interaction network derived from the ViSEN analysis. Each node or vertex
in the network is a SNP with a main effects proportional to the size of the circle. Lines connecting two SNPs are
proportional to the size of the synergistic interaction effects after removing the one-way effects. Triangles
connecting three SNPs are proportional in size to the degree of pure three-way synergistic interaction after
removing the two-way and one-way effects. Note that SNPs rs661090 and rs12222334 from our final best model
have a pairwise synergistic interactions with only indirect interactions with the third SNP in the model, rs1570612.
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