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Abstract

Background: The Consortium for Neuropsychiatric Phenomics (CNP) at UCLA was an
investigation into the biological bases of traits such as memory and response inhibition
phenotypes—to explore whether they are linked to syndromes including ADHD,
Bipolar disorder, and Schizophrenia. An aim of the consortium was in moving from
traditional categorical approaches for psychiatric syndromes towards more
quantitative approaches based on large-scale analysis of the space of human variation.
It represented an application of phenomics—wide-scale, systematic study of
phenotypes—to neuropsychiatry research.

Results: This paper reports on a system for exploration of hypotheses in data obtained
from the LA2K, LA3C, and LA5C studies in CNP. ViVA is a system for exploratory data
analysis using novel mathematical models and methods for visualization of variance. An
example of these methods is called VISOVA, a combination of visualization and analysis
of variance, with the flavor of exploration associated with ANOVA in biomedical
hypothesis generation. It permits visual identification of phenotype profiles—patterns
of values across phenotypes—that characterize groups. Visualization enables screening
and refinement of hypotheses about variance structure of sets of phenotypes.

Conclusions: The ViVA system was designed for exploration of neuropsychiatric
hypotheses by interdisciplinary teams. Automated visualization in ViVA supports
‘natural selection’ on a pool of hypotheses, and permits deeper understanding of the
statistical architecture of the data. Large-scale perspective of this kind could lead to
better neuropsychiatric diagnostics.

Keywords: Methodologies, Hypothesis generation and refinement, Visualization, EDA,
ANOVA, Covariance structure

Background
Motivation: better neuropsychiatric diagnostics

Diagnosis in neuropsychiatry rests on an elaborate taxonomy of syndromes and explicit
decision trees for classification. For example, these decision trees have been codified in
DSM-IV [1] and its very recent revision DSM-V [2]. Dissatisfaction with the current
situation has been evident throughout the development of DSM-V, and particularly its
inclusion of dimensional classification (quantitative approaches to assessment and diag-
nosis) [3] as a step beyond DSM-IV ‘chinese menu’ diagnosis and categories that do not
always fit, toward quantitative assessments of severity and treatment response that are
grounded in data. However the benefits of dimensional approaches remain controversial.
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The stakes involved in this evolution are breathtaking, as the DSM is a cornerstone of the
mental health system.
Many research efforts are now seeking better models for existing categories such as

ADHD, Bipolar Disorder, and Schizophrenia. These rubrics are often said to be inade-
quate for classification because they rest on inaccurate descriptions. The NIMH Strategic
Plan seeks improvements on existing diagnostic categories for mental disorders, both
because the categories lack validity and because they limit incorporation of new scientific
results. A criticism often leveled against the DSM is that it is not aligned with any scien-
tific model of neuropsychiatric disorders [4]. A related criticism is that different diagnoses
overlap significantly, in some cases using different terminology for the same concept.
Large databases can support both statistical evaluation of these criticisms and develop-

ment of better diagnostics. For example, a recent investigation of differences in disorder
incidence rates by gender [5] focused on patterns of disorder comorbidity based on the
very large (n= 43,093) National Epidemiologic Survey onAlcohol and Related Conditions
(NESARC). As discussed later, the results offered an overall statistical outline or architec-
ture for disorders, clarifying how they impact men and women differently: women have a
higher incidence of internalizing (mood and anxiety) disorders, while men have a higher
incidence of externalizing (antisocial and substance use) disorders [6]. This link between
gender on disorders has become formalized in the Internalizing-Externalizing ‘meta-
structure’ of DSM-V [2], and the database analysis results in [5] suggest an important way
it can be refined.
A related trend is the development of increasingly sophisticated models based on data

[7]. General linear models (GLMs [8]) or structural equation models (SEMs [9], often
referred to as CSA—covariance structure analysis) are becoming common, permitting
characterization of variance structure with a set of functional equations. An emphasis on
dimensional models has been developed within the NIMH Research Domains Criteria
(RDoC) project [10,11], particlarly for diagnosis, permitting continuous variables of func-
tion, ranging from behavior down to neurobiology. The variance structure models and
phenotype profiles emphasized in this paper are consistent with this trend. With large
databases, these models have the potential for significant advances in neuropsychiatric
diagnosis.

The CNP database

The LA2K study [12,13] was conducted at UCLA during 2008–2012, designed within
CNP as a large-scale analysis for about 2000 volunteers from the Los Angeles metropoli-
tan region. Behind its development was the hypothesis that there may be sufficient
variance in healthy people along dimensions shared with people with psychopathology,
that we might find common mechanisms with genetic links. For example, the genetic
bases for variability in working memory in healthy people may also be the basis for work-
ing memory impairments commonly found in patients. LA2K focused on the evaluation
of memory and response inhibition as central endophenotypes [14] with the potential to
serve as basic dimensions for neuropsychiatry. Ultimately this approach also could permit
development of statistical models characterizing neuropsychiatric syndromes, without
relying on traditional taxonomies and their discrete categories.
LA2K was developed in part, then, as a demonstration of the use of phenomics as a

framework for neuropsychiatry, and hopefully also a way to advance the pace of research
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[15]. Phenotypes—detectable or measurable characteristics of an organism—are outward
manifestations of interaction of its genotype and environment. Phenomics is the system-
atic study of biological and behavioral phenotypes [13]. Because phenotypes are present
in all scales of science, phenomics is interdisciplinary and intrinsically large-scale in
scope. LA2K was a 6-year effort aimed at discovery of relationships that would go unde-
tected with a smaller scope. Initially LA2K obtained data on approximately 1300 subjects
(healthy control subjects, not suffering from any major syndrome). The related LA3C
and LA5C studies subsequently included some patients diagnosed with ADHD, Bipolar
Disorder, and Schizophrenia, increasing opportunities for discovery.
Results from these studies are stored together in the CNP database, a relational database

with about 50 tables together comprising over 2500 numeric variables (columns). Each
column representing a single (but not independent) phenotype or measurement, and
each table reflects an experimental protocol. Table 1 shows names of cognitive tasks and
personality rating scales represented in the tables.
In general terms, the CNP database permits investigators to analyze the behavior of sub-

jects in neurocognitive measures that reflect memory and response inhibition (recording
reaction times and accuracy measures), as well as aspects of temperament, personality,
and syndromal behavior. Each table in Table 1 has data for the relevant subjects.

Phenomic analysis

The LA2K study was designed around a schema spanning 7 levels of neuroscience, from
genome to syndrome, centering on memory and response inhibition phenotypes [13].
The levels were designed to facilitate development of new models for syndromes, with
hypotheses based on these phenotypes.
Traditional hypothesis testing can be difficult in phenomics. The diversity of variables

and complexity of the systems they represent can challenge any experimental design.
Analyzing variance in a set of phenotypes over different population groups requires
perspective and an integration of knowledge that may not exist a priori. One conse-
quence of integrative analysis is that hypothesis formulation can become more adaptive,
with hypotheses evolving as perspective is gained [16]. Another is that visualization can
become valuable for interpreting the breadth of phenomic information [17-19].
As an illustration of the power of perspective, Figure 1 shows a correlation matrix for

a set of over 150 key variables—a collection of phenotypes chosen by investigators as
representing much of the variance. The matrix exhibits limited pockets of positive corre-
lation, reflecting the careful selection of these variables so as to be independent. Generally
the matrix shows low correlation outside these pockets—except some anti-correlation
between variables at the start (reaction time variables) and variables at the end (total raw
score variables), possibly reflecting speed-accuracy tradeoffs.
The dendrograms in Figure 1 show block structure, and suggest how the variables could

be partitioned into clusters representing dimensions of significant variance. These clus-
ters may correspond to phenotype profiles—patterns of values across sets of phenotypes
that characterize important categories. A benefit of using a phenomics approach is that
we may be able to identify useful profiles, and also be able to explain the variance in the
population with models. For example, methods like PCA [20] might be used to summa-
rize the variables in this matrix with about 20 dimensions, since the first 20 components
explain about 50% of its variance.
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Table 1 Tasks and Tests in the LA2K database

CNP database domain/Test Abbrev

Consent/Screening/Diagnosis/Clinical Rating Scales

Adult ADHD Interview (module from KSADS-PL) AAI

Hopkins Symptom Checklist 25 HSCL25

Structured Clinical Interview for DSM-IV/Axis I/Patient version SCID-I/P

Personality/Temperament/Symptom Questionnaires

The Temperament and Character Inventory TCI

The Chapman Scales – Physical Anhedonia RPAS

The Chapman Scales – Social Anhedonia RSAS

The Chapman Scales – Perceptual Aberrations PAS

Eckblad and Chapman’s Hypomanic Personality Scale HPS

Golden and Meehl’s 7-Item Schizoid Scale G+M

Munich Chronotype Questionnaire MCTQ

Akiskal’s Bipolar II Scale BPII

Barratt Impulsivity Scale BIS

Eysenck’s Impulsivity Venturesome and Empathy Inventory IVE-R

MPQ (Control-Impulsivity items) MPQ-CI

The Dickman Scale of Functional vs Dysfunctional Impulsivity DSFDI

Neurocognitive measures

Spatial and Verbal Memory and Manipulation Tasks SMNM/VMNM

Spatial and Verbal Working Memory Capacity Tasks SCAP/VCAP

Remember-Know Paradigm RK

Scene Recognition Task SR

California Verbal Learning Test CVLT-II

WMS-III Spatial Span WMS-SS

WMS-III Digit Span WMS-DS

WMS-III Visual Reproduction (part I/II [immed/delayed recall]) WMS-VRI

WMS-III Letter Number Sequencing WMS-LNS

Stop-Signal Task SST

Conner’s CPT II CPT-II

Reversal Learning PRLT

Task Set Switching TS

Stroop Test SCWT

Attention Networks Task ANT

Delay Discounting DDT

Balloon Analog Risk Task BART

A list of tasks and tests represented as tables in the CNP database. Altogether the database has about 50 tables and 2500
variables (columns), with complete records for about 1300 subjects in the LA2K, LA3C, and LA5C studies.

However, decomposition ultimately requires conditioning on features of the population.
Multi-level models permit conditioning on group or factor features such as gender or age,
or syndromes like ADHD, BP, or SZ. This blend of categorical and quantitative modeling
permits explanation of differences in variance for different population groups. An exam-
ple using PCA is shown in Figure 2, illustrating how variance in the data can change if
we condition on either the ADHD, BP, or SZ group. Multi-level variance structure is fun-
damental to analysis of variance (ANOVA) [8], and linear modeling that spans groups.
Models like these can help map out the space of human variation.
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Figure 1 The (clustered) correlationmatrix for a set of more than 150 key variables that were
carefully selected to represent a significant part of the variance in the data. The dendrograms cluster
variables by their correlation matrix similarity.

Variance structure models

Variance structure is a common term in data analysis. It typically refers to patterns of
variation in statistical models related to distributions (variance of individual variables),
covariance and correlation of variables, and more general equational relationships among
variables. A variance structure model is a mathematical expression of these relationships.
Important classes of variance structure models include general linear models (GLMs

[8]) and structural equation models (SEMs [9]). These permit characterization of variance
structure in terms of a set of functional equations that are often linear in form. However
they permit nonlinear interactions (nested models) and conditioning on non-numeric
variables or factors that take discrete values (multi-level models).
Variance structure is often exposed by an incremental process of decomposition or fac-

toring, yielding a hierarchy or graph of components that together form an overall model.
For example, PCA is a linear algebraic model of covariance structure. From the stand-
point of decomposition, this process also can differentiate clusters of similar variables
from others, and extract hierarchical block structure.
An important aspect of variance structure is that it can often be visualized. For exam-

ple, it is not a coincidence that the hierarchical model foundation for the popular trellis
graphics visualization framework [21] corresponds to grids of graphics that highlight vari-
ation. This insight was the spark that led to the ViVA (Visualization of VAriance) system
architecture described in this paper.
In ViVA, a variance structure model

M : Y ∼ X | G : (S)
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Figure 2 The projection of the study data on the first 3 principal components [20] for the correlation
matrix in Figure 1. Two views are offered—pairwise projections and a 3D view—showing the relative
positions of healthy controls (light orange), ADHD patients (blue), Bipolar patients (red), and Schizophrenia
patients (purple). Schizophrenia patients have extreme coefficient values on the first two principal
component, and both BP and ADHD patients on the second and third. In the 3-dimensional perspective the
separation of these four classes is more visible, with patients as outliers with high phenotypic variance. Very
roughly, the three components respectively emphasize total raw scores in tasks, scores measuring
psychological stress and mental health, and scores reflecting working memory performance.

is a specification of a rough hypothesis with five items:

• a subset S of the data (a population of subjects that is meaningful for analysis).
• a grouping G, specifying a set of class names (factor levels) defining several

subpopulations.
• zero or more dependent variables Y from the CNP database. (If zero, all variables are

independent).
• one or more independent variables X from the CNP database.
• a model of varianceM (a mathematical model and/or visualization method for

explaining variance).

In particular, the model

VISOVA : ∼ ReactionTime | Age : (LA2K control)

relates reaction time to age groups that define population subsets—in this case restricted
to control subjects. Multi-level models with this kind of conditioning are basic to
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ANOVA, explaining variance across the different values of a factor, such as the Female
and Male values of Gender.
Although ViVA supports development of hypotheses about the study data, it deliber-

ately has no facilities for traditional statistical hypothesis testing. This resolves a tension
between discovery and hypothesis testing. A recent review [22] contrasts ‘-ology’ strate-
gies that typically test a priori hypotheses with ‘-omics’ strategies that adopt more
agnostic, exploratory approaches, stressing that “... discovery-based approaches do not
eschew hypotheses; rather, they seek to elevate hypothesis testing to a new level, by
allowing high-throughput hypothesis generation and prioritization” [22].
ViVA focuses on exploration of variance structure hypotheses in a large phenotype

database. Exploration of hypotheses can involve analytical generation and prioritization,
but a particular strength of ViVA has been as a source of ‘natural selection’ in a hypoth-
esis pool. Grounding hypotheses in data—checking them as assertions about the CNP
database—permits screening of weaker hypotheses and refinement of hypotheses that
survive. With this kind of testing, the process of hypothesis generation [16] becomes one
of evolution.

Objectives of this paper

This paper describes ViVA’s support for exploring hypotheses. The system was designed
for neuropsychiatric hypothesis exploration by interdisciplinary teams, and more specif-
ically for grounding them in data (checking them as concrete assertions about LA2K).
Automatically-constructed visualizations in ViVA permit exploration and deeper under-
standing of variance structure, and grounding improves the hypothesis pool. With a
sequence of examples, we illustrate how this approach can contribute towards the
development of better neuropsychiatric diagnostics.
The system is novel in several ways. First, ViVA directly links visualization with vari-

ance structure models, permitting interactive visual exploration of natural models in
a large database. It includes VISOVA, for example, a combination of visualization and
analysis of variance with the exploratory flavor that is associated withANOVA in biomed-
ical hypothesis generation. Viewing variance structure models as hypotheses, it provides
automated support for integrative analysis of large phenotype databases. The examples
given attempt to illustrate its potential in developing greater understanding of phenotypic
variation.

Methods
This project initially began as a server aimed at sharing of exploratory data analysis scripts
for the CNP database. These evolved, until it eventually became clear that they empha-
sized visual analogues of ANOVA—including what we call VISOVA—holding some
variables fixed, varying others, and permitting visualization of the resulting ‘response’.

ViVA architecture

ViVA is actually three related systems, each providing a different mode of exploration:

• ViVA Atlas—‘gallery’ of results for predefined hypotheses.
• ViVA Viewer—simple menu-based hypothesis exploration.
• ViVA Explorer—advanced development of hypotheses.
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These three differ mainly in the power of the interface. The Atlas has a simple interface,
allowing immediately access to wide sets of results, with large pre-computed reports that
overview the data. The Viewer allows relation-level exploration, permitting rapid visual
exploration of entire tables listed in Table 1. The Explorer has an advanced interface,
permitting definition of population groups and analysis of specific variables. These three
systems can be used in sequence, progressing from initial passive orientation to active
exploration.
The architecture common to these three systems aims at making exploration as effort-

less as possible. This boils down to automation: automated data cleaning, implementation
of group tables, creation of tables and fields wherever needed, development of web infras-
tructure, and introduction of features aimed at simplifying interaction and rising above
the complexity of the database.
Experience with ViVA has highlighted benefits of this architecture for visualization of

variance:

• implementing visualization with a server has advantages for pooling effort (such as in
data cleaning and visualization scripts), and for maintaining best practices and
standards (such as verification of distributions).

• using universally-understood vocabularies of visualization and exploratory data
analysis (EDA [23] and ANOVA) can help in trans-disciplinary work, particularly
among scientists with little programming experience.

Hypotheses in ViVA Explorer can involve any subset of 2500 phenotype variables,
and can condition on any of 60 group structures in 18 predefined population subsets
(as well as on all experimental protocols). This permits very flexible definition of vari-
ance structure models. Results of analyses are ‘web sites’ that can be refined or extended
collaboratively at any time.

Visualization of variance

Our variance structure models M : Y ∼ X | G : (S) are adaptations of the formulas
Y ∼ X | G supported by linear models in the S and R statistical computing environments
[8]. They are also a mainstay of trellis graphics [21], an influential visualization toolkit in
these environments. In trellis graphics, the values (factor levels) of conditioning variables
define an array or grid (‘trellis’) of similar visualizations, allowing side-by-side comparison
across these values. Thus the conditioning variables yield automatic construction of grids
of visualizations.
Side-by-side display is a powerful tool for visualization of variance, although we have

not seen it presented or developed in this way. A new emphasis of ViVA is in directly link-
ing visualization with variance structure models, permitting interactive visual exploration
of dimensional representations of disorder.
How does ViVA differ from existing visualization systems? For example, the Clinical

suite of tools in Spotfire [24,25], a widely-used visualization framework, provides sum-
mary statistics, relation plots, and many other types of charts. Most statistical computing
environments provide these functions as well. Although it doesn’t providemore functions
or analytical power than these systems, ViVA is novel and has some strengths.
ViVA focuses on visualization of variance. It ties variance structure models directly

to visualization, permitting exploration of hypotheses across groups; this is unique. For
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example, Figures 3 and 4 below show examples of VISOVA (to be outlined below)—a
novel integration of ANOVA, clustering, and parallel coordinates. Also it anticipates some
questions and includes additional results in reports with sets of visualizations, rather
than individual plots. Out of concern over the likelihood of misinterpretation, however, it
supports only hypothesis exploration, not hypothesis testing.
ViVA goes to lengths to make exploration effortless. It consists of about 50,000 lines

of Python code, which is equally split between web interface and back-end data manage-
ment. The latter involves automation of updates in a data extraction and cleaning pipeline,
implementation of group structures and subpopulations, creation of useful extra tables
and fields, and visualization functions that have been improved over time. These things
can be implemented in any environment, but LA2K is complex, and ViVA provides three
exploration modes (Atlas, Viewer, Explorer), which led to a custom design.
Existing research practice is very different—it begins with a basic hypothesis and con-

cludes with statistical hypothesis tests. Generally the hypothesis concerns a small set of
variables, involving at most a few tables, with questions like those behind the design of
LA2K. The first step is specific (and deliberately limited) selection of variables from the
data dictionary, followed by data download, manual cleaning and reformatting as spread-
sheets, and loading into a statistical computing environment. Visualization is not heavily

ALL_EPRIME_MEAN_RT [LA2K Control complete] : parallel coordinates plot (with group averages)

V
C

A
P

7_
F

N
R

T
_M

E
A

N

V
C

A
P

9_
T

P
R

T
_M

E
A

N

V
C

A
P

7_
T

P
R

T
_M

E
A

N

V
C

A
P

9_
C

O
R

R
E

C
T

R
T

_M
E

A
N

V
C

A
P

7_
T

N
R

T
_M

E
A

N

V
C

A
P

9_
T

N
R

T
_M

E
A

N

V
C

A
P

7_
C

O
R

R
E

C
T

R
T

_M
E

A
N

V
C

A
P

5_
T

P
R

T
_M

E
A

N

V
C

A
P

5_
C

O
R

R
E

C
T

R
T

_M
E

A
N

V
C

A
P

5_
T

N
R

T
_M

E
A

N

V
C

A
P

9_
F

N
R

T
_M

E
A

N

V
C

A
P

3_
T

N
R

T
_M

E
A

N

V
C

A
P

3_
C

O
R

R
E

C
T

R
T

_M
E

A
N

V
C

A
P

3_
T

P
R

T
_M

E
A

N

V
C

A
P

9_
F

P
R

T
_M

E
A

N

V
C

A
P

3_
F

N
R

T
_M

E
A

N

V
M

N
M

_M
A

N
IP

_M
N

R
T

S
M

N
M

_M
A

N
IP

_M
N

R
T

S
M

N
M

_M
A

IN
_M

N
R

T

V
M

N
M

_M
A

IN
_M

N
R

T

V
C

A
P

5_
F

P
R

T
_M

E
A

N

S
R

_M
E

A
N

_E
N

C
_R

E
P

3

V
C

A
P

5_
F

N
R

T
_M

E
A

N

S
R

_M
E

A
N

_E
N

C
_R

E
P

2

S
R

_M
E

A
N

_E
N

C
_R

E
P

1

S
C

W
T

_I
C

_M
N

_R
T

S
C

W
T

_C
C

_M
N

_R
T

S
C

W
T

_M
E

A
N

C
O

N

D
D

T
_M

N
_R

T

S
C

W
T

_M
E

A
N

IN
C

V
C

A
P

7_
F

P
R

T
_M

E
A

N

V
C

A
P

3_
F

P
R

T
_M

E
A

N

S
C

W
T

_I
I_

M
N

_R
T

S
C

W
T

_C
I_

M
N

_R
T

T
S

_S
H

O
R

T
IN

C
O

N
G

S
W

R
T

T
S

_S
H

O
R

T
C

O
N

G
S

W
R

T

T
S

_L
O

N
G

C
O

N
G

S
W

R
T

T
S

_L
O

N
G

C
O

N
G

N
O

S
W

R
T

T
S

_L
O

N
G

IN
C

O
N

G
S

W
R

T

T
S

_S
H

O
R

T
C

O
N

G
N

O
S

W
R

T

T
S

_S
H

O
R

T
IN

C
O

N
G

N
O

S
W

R
T

T
S

_L
O

N
G

IN
C

O
N

G
N

O
S

W
R

T

S
S

T
_B

K
2_

M
E

A
N

_R
T

S
S

T
_S

E
S

_M
E

A
N

_R
T

S
S

T
_B

K
1_

M
E

A
N

_R
T

A
N

T
_I

C
_M

N
_R

T

A
N

T
_M

E
A

N
_R

T
C

O
N

A
N

T
_N

C
_M

N
_R

T

A
N

T
_C

C
_M

N
_R

T

A
N

T
_M

E
A

N
_R

T
N

E
U

A
N

T
_M

E
A

N
_R

T
IN

C

A
N

T
_C

N
_M

N
_R

T

A
N

T
_N

N
_M

N
_R

T

A
N

T
_N

I_
M

N
_R

T

A
N

T
_C

I_
M

N
_R

T

A
N

T
_I

N
_M

N
_R

T

A
N

T
_I

I_
M

N
_R

T

B
A

R
T

_M
E

A
N

R
T

B
LU

E

B
A

R
T

_M
E

A
N

R
T

R
E

D

B
A

R
T

_M
E

A
N

R
T

 603

1575

 966

1684

 984

1608

1018

1620

1008

1482

1059

1718

1060

1420

 928

1427

 969

1355

 919

1432

 954

1738

 713

1426

 846

1259

 849

1295

 711

1692

171

1080

1477

1933

 985

1387

 846

1281

1381

1830

186

1036

668

900

51.5

1184.2

671

907

687

952

540

778

528

817

526

787

1345

6405

670

918

 201

1342

420

 832

664

971

634

998

 627

2006

 635

1719

 290

1369

 244

1294

 165

1699

 430

1431

 358

1659

  91.3

1609.2

539

761

551

750

531

782

496

755

471

739

476

721

451

761

471

731

555

817

492

689

475

719

531

871

538

889

459

800

540

859

162

674

146

727

149

701

(Age_21_25 or Age_26_30) (556)     (Age_31_35 or Age_36_40) (220)     (Age_41_45 or Age_46_50) (174)     

Figure 3 The ravages of age: every mean reaction time variable in the CNP database exhibits slowing
with age. The three phenotype profiles (thick lines showing averages by age group) are consistently ordered
across all variables, exhibiting a progressive increasing of reaction times with age in every task. This is an
example of VISOVA, an integration of parallel coordinates plots [21] with analysis of variance: if horizontal
trajectories in the diagram were removed, and made to emphasize the group averages for each variable
(column), this would resemble a parallel ANOVA display. However VISOVA also selects a variable ordering so
that highly-correlated variables are clustered together.
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ALL_EPRIME_STDDEV_OVER_MEAN_RT [LA2K Control or Patient complete] : parallel coordinates plot (with group averages)
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Figure 4 Phenotype profiles of controls (blue) and Schizophrenia patients (red) on the Coefficient of
Variation (CV = σ/μ) for every Reaction Timemeasure in the database possessing bothμ and σ . In
other words, for every available RT measure with μ and σ , Schizophrenia patients have higher RT Variability.
Despite the diversity of tasks (SMNM, DDT, ANT, SCWT, SR, SST), the differences are consistent and exceed the
standard error (error bars).

used if at all, partly out of principle and partly because of the perceived energy expen-
diture required to generate useful displays. Statistical computing environments provide
trustworthy hypothesis testing.
Although ViVA includes no hypothesis testing, the time required to complete the

other research steps—from selection of populations and variables to obtaining analy-
sis reports—is at most a few minutes. The resulting visualizations immediately detect
mistakes in variable selection and identify concerns about variable distributions and
assumptions. Visualization can instantly suggest discarding or refining a hypothesis. ViVA
cannot automate human hypothesis development, but it can support it with exploration.

Results and discussion
We illustrate hypothesis exploration in ViVA—with visualization of variance—with
several example scenarios. These applications highlight points that motivated the
development of LA2K, such as the value of phenotype profiles that cut across disci-
plines. However the main thing they illustrate is how exploration can refine hypotheses.
Although it cannot validate or prove hypotheses, then, ViVA can ground them in data—
and introduce forces of natural selection that yield better hypotheses. This section offers
a few examples to illustrate what ViVA has to offer for hypothesis development and
visualization of variance. More examples are available at http://www.hypweb.org.

http://www.hypweb.org


Parker et al. BioDataMining 2014, 7:11 Page 11 of 18
http://www.biodatamining.org/content/7/1/11

Sample hypothesis: age and reaction time

Consider a rough hypothesis that reaction time (RT) is affected by age. We can explore
this hypothesis by considering all Mean RT values (joined across tables). Figure 3 shows
a VISOVA (parallel coordinates/ANOVA) visualization for a table containing all key
MEAN RT variables, essentially a sequence of variance structure models VISOVA : ∼
ReactionTime | Age : (LA2K control), in which each column shows the effect of age
on one (independent) RT variable. This axis labels shows all of the MEAN RT variables
included and the columns representing variables are clustered according to correlation
similarity. In other words, each column represents the value range of a single variable, and
trajectories across the columns give the sequence of RT values for a single subject.
VISOVA displays extend parallel coordinates with group structure. Individual group

averages for the variables are also superimposed as thicker lines along with standard error
bars; the colors reflect the 7 age ranges used as groups. In other words, the continuous
age variable here has been used to obtain discrete population subgroups. The thick red
line at the top shows the average for subjects aged 41–50, while the blue line near the bot-
tom shows the average for subjects aged 21–30. Thus a thick line represents a phenotype
profile (pattern of average values) for a particular group. The gradual increase of RT over
these age groups is consistent across all Mean RT variables, suggesting an ongoing pro-
cess of decline (progressive increase in mean reaction time) with age, regardless of task
or type of RT measure (e.g., congruent vs. incongruent RT). This continuum in this effect
suggests that a mathematical model of decline might be possible.
The recent article [26] notes that Age is often incorrectly treated as a ‘nuisance

variable’—a quantity of little perceived interest or relevance, yet which must be statisti-
cally controlled as it might indirectly affect quantities of interest. It asserts that controlling
for age can give distorted views of disease processes; many psychosocial factors are influ-
enced by the stage of life. Nuisance assumptions are difficult to check, but this example
shows that doing it can be imperative, and visualization can help.
The results here encourage exploration of still stronger hypotheses. For example, the

same variance structure model could be specialized with other factors—such as demo-
graphic factors like gender or ethnicity, and behavioral factors like smoking habits. Any
of the 60 factors in ViVA could be checked. Changes to the hypothesis above to incorpo-
rate new group structure or include other variables only require changing selections in
the interaction menu. The interface encourages exploration of assumptions.

Sample hypothesis: timing and schizophrenia

Hypotheses regarding the characterization of Schizophrenia in terms of interval timing
have emerged recently [27,28]. Various deficits in temporal processing are associated with
symptoms of the disorder. It is interesting to explore whether LA2K can provide some
support for this association.
The database includes a large number of temporal phenotypes, many in the form

of reaction time (RT) measurements. These RT variables include mean and standard
deviation (a digest of multiple trials), but provide nothing further for interpretation.
Consequently, ViVA was constructed to augment these with both SNR (signal-to-noise-
ratio = μ/σ ) and CV (coefficient of variation = σ/μ) variables, normalizations that
permit useful visual comparison of values. In other words, ViVA augments the database
variables with useful related measures of variance.
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ViVA can explore hypotheses about differences in RT variability (RT CV) exhibited in
Schizophrenia. An advantage of RT CV instead of RT alone is that it is less sensitive to the
underlying reaction time distribution. Some related published work is in [29], including
arguments for using CV in measuring reaction time [30]. Although there has been recent
interest in response time variability as a measure, there is almost no existing work relating
RT variability and Schizophrenia.
Figure 4 shows a VISOVA display of CV values that cut across the database, with

the variance structure model VISOVA : ∼ Reaction Time CV | G : (LA2Kcontrol +
LA3Cpatient) where G is an ad hoc group constructed to include control subjects and
Schizophrenia patients. In this plot, Schizophrenia patients have uniformly higher CV
values, and the differences exceed the standard error. This cannot validate hypotheses,
but it is a demonstration of how one can ground hypotheses in data. It might encourage
exploring othermeasures of variability—such as RT SNR and RT FF (Fano factor= σ 2/μ).
Exploration of variance structure—with ViVA’s automatic augmentation of the database

with CV variables—in this case suggests new hypotheses, with interesting results. Despite
the broad set of RTmeasures in Figure 4 (all CVmeasures in the CNP database—spanning
SMNM, DDT, ANT, SCWT, SR, and SST), with few exceptions the differences are greater
than the standard error (error bars). Furthermore, more exploration suggested that RT
CV is not clearly age-dependent (unlikeMEANRT in Figure 3), encouraging investigation
of RT CV as a supplementary measure to RT.

Sample hypotheses: ethnicity profiles

Next we offer two examples in which ViVA raised doubt about hypotheses. Both involve
ethnicity.
The recent study [31] suggested possible links between health and ethnicity. This con-

clusion was based on a discovery that a region of the human genome that codes for many
antibodies has sections that can be absent, and this variation can depend on ethnicity.
Thus, ethnicities might have different health profiles.
LA2K was designed in part for analysis of Hispanic ethnicity, and about 40% of its sub-

ject population is Hispanic. The CNP database also has some variables related to health,
offering a way to ground the health hypothesis in data. Figure 5 shows overall pheno-
type profiles (patterns of values for each group) across phenotypes related to health and
Novelty Seeking/impulsive behavior.
The health phenotypes in Figure 5 shows no differences between Hispanic and non-

Hispanic subjects. To put this in perspective, it is not hard to find ethnic differences that
could have links to health. Figure 5 shows clear differences for BMI, so variance struc-
ture is evident. However, this variance does not extend to the LA2K Health Score—a sum
across 21 items asking about diagnoses with, or treatment for, a number of serious med-
ical illnesses. In other words, no pattern was apparent in Covariance : Health ∼ BMI |
Ethnicity : (LA2K control), and exploration did not find any health differences linked to
ethnicity.
There are other interesting hypotheses regarding ethnicity that are based in genetics.

For example, specific variants of the DRD4 gene have been associated with Novelty Seek-
ing (NS) behavior, and a well-known hypothesis is that NS was important for human
migration out of Africa 50,000 years ago [32]. A careful recent analysis [33] confirmed an
association between the DRD4 2R and 7R polymorphisms and migratory distance. The
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Key_Trait_Ques..., Key_Additional..., MPQ [LA2K Control complete] : parallel coordinates plot (with group averages)
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Figure 5 This VISOVA display shows ‘ethnicity profiles’ across novelty seeking and health indicators
for both Hispanic (orange) and non-Hispanic (green) subjects. For clarity the ethnicity of Hispanic
subject’s parents were constrained to be Hispanic, and ethnicity of non-Hispanic subjects were constrained
to be European (Anglo-Saxon, Western European, or Northern European). Health did not appear to be
influenced by ethnicity: there are no apparent difference on the aggregate LA2K Health Score (a tally of
health problems), despite differences in BMI. Also, differences in Novelty Seeking (NS) and impulsivity-related
indicators contradicted an initial hypothesis of higher NS scores in Hispanic subjects.

DRD4 7R polymorphism also has been associated with a variety of phenotypes related to
NS, including ADHD and smoking phenotypes. However, there is controversy about these
associations, and differing results have emerged in populations from different countries
[34].
An initial hypothesis then might be that subjects of Hispanic ethnicity have higher NS

scores. Figure 5 shows that grounding this hypothesis in LA2K suggests the opposite: NS-
related summary variables from the TCI yield lower score values for Hispanic subjects.
Furthermore, smoking measures were lower for Hispanic subjects. This profile appears
robust, consistent across multiple indicators.
However, the LA2K ‘ethnicity’ classification is self-reported, and controls were screened

for ADHD. For clarity the ethnicity of subjects was constrained to match both parents in
Figure 5. The measures related to Novelty Seeking from the TCI inventory were consis-
tently higher for non-Hispanic subjects. We found support only for negative hypotheses
VISOVA:∼ NS | Ethnicity : (LA2K control) relating NS to Hispanic ethnicity. Grounding
of both ethnicity hypotheses in data raised only doubts.
Development of ethnicity profiles as a robust form of hypothesis checking is an inter-

esting direction for work with complex phenotypes like NS and health. Furthermore, the
eventual incorporation of genome-wide genetic variation data in ViVA will allow inves-
tigators to stratify groups based on more precise measures of ancestral background, as
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opposed to relying solely on self-reported ethnicity. Generally, phenotype profiles fit
the phenomics/cross-disciplinary outlook mentioned earlier. Multi-population, multi-
phenotype views also have found success before in integrative visualization systems
[17-19].

Hypotheses about neuropsychiatric statistical architecture: genderand disorder prevalence

As mentioned earlier, large databases and systems like ViVA may become important for
developing better neuropsychiatric diagnostics. A noteworthy example is in differences in
disorder incidence rates by gender reported in [5], which analyzed patterns of comorbid-
ity in the National Epidemiologic Survey on Alcohol and Related Conditions (NESARC,
n > 40, 000). The results not only clarify how disorders affect men and women differently,
but also offer an overall statistical architecture for this difference.
Many studies have found that women have a higher incidence of internalizing (mood

and anxiety) disorders, while men have a higher incidence of externalizing (antiso-
cial and substance use) disorders [6]. This schism is now reflected in the overall
internalizing-externalizing dimensional model of DSM-V [2]. This gender difference
is easy to check with ViVA; Figure 6 shows that the prevalence of MDD (Major
Depressive Disorder, an internalizing disorder) and AAD (Alcohol Abuse and Depen-
dence, an externalizing disorder) both follow the expected gender-specific liability
profile.
Recently a dimensional model of comorbidity among these disorders appeared in [5],

with the surprising claim that the comorbidity prevalence of disorders is identical in both
genders. That is, once the latent gender-specific liability levels are conditioned for, the
structure of common disorders is gender-invariant. This result suggests a single overar-
ching disorder structure. It also bypasses a basic problem in analyzing comorbidity—the
assumption that the categories of the disorders are valid. If the disorders are dimensional,
comorbidity should be dimensional also.
Reported levels of disorder prevalence by gender have varied [6,35,36], although

the outline of internalizing and externalizing liability has been confirmed. These con-
firmations were important in the arduous DSM-V development process, which has
required years of deliberations and field trials [2]. The ability to explore the structure
of human variation in large databases like NESARC, with systems like ViVA, could be
a way to increase consensus and incorporate scientific models into neuropsychiatric
practice.
Figure 7 appears consistent with the gender-invariance claimed in [5]. The left image

shows the psychological stress/mental health profile for all MDD (Major Depressive Dis-
order) subjects, and the right shows this for all AAD (Alcohol Abuse and Dependence)
subjects, among LA2K controls—where these groups were defined based on a previous
diagnosis. The profile is a set of summary scores from the HSCL-25 Hopkins System
Checklist, and ASRS ADHD Self-Report Scale, giving a broad assessment of mental
health. In both images affected males are shown in red, and females in blue; similarly
control males are orange, and control females are green. Age and Smoking are strongly
correlated with both MDD and AAD. The average profiles for MDD and AAD are sim-
ilar across the spectrum of Hopkins and ASRS scores, and the distinctions between
male and female subjects are not pronounced. The gender-invariance hypothesis is not
contradicted by the data.
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Figure 6 Internalizing disorders such as MDD (Major Depressive Disorder) are known to have higher
prevalence in women, and externalizing disorders such as AAD (Alcohol Abuse and Dependence) to
have higher prevalence in men. ViVA permits rapid verification of this in LA2K controls. Group sizes for
MDD are on the left, and AAD on the right (normal females: green, affected females: blue; normal males:
orange, affected males: red).

Conclusions
Phenomics and phenotype databases are natural settings for hypothesis exploration. In
biomedicine, hypotheses often concern variance structure—patterns of variation in vari-
ables when group and population structure are controlled. The abundance of extensions
for ANOVA in the statistical and biomedical literature [8] show the importance of vari-
ance structure. However ViVA is novel in combining it with visualization as a system,
introducing methods like VISOVA to integrate visualization and ANOVA.
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Figure 7 As a reflection of ‘comorbidity’ of MDD (Major Depressive Disorder) and AAD (Alcohol Abuse
and Dependence) with other psychological disorders, we can look at their average profiles against
other mental health indicators and measures of psychological stress. The figures here display the
psychological stress profiles of MDD (left) and AAD (right) across summary scores from the Hopkins System
Checklist (HSCL-25). They include two summary scores from the Adult ADHD Self-Report Scale (ASRS) in order
to track associations with ADHD; and Age and Smoking (Cigs) are also added as checks. The parallel
coordinates displays here show similar average profiles. It has been known for some time that internalizing
disorders such as MDD (Major Depressive Disorder) have higher prevalence in women than in men, and
externalizing disorders such as AAD (Alcohol Dependence) have higher prevalence in men than women
(normal females: green, affected females: blue; normal males: orange, affected males: red).



Parker et al. BioDataMining 2014, 7:11 Page 17 of 18
http://www.biodatamining.org/content/7/1/11

In ViVA, a variance structure model is an assertion M : Y ∼ X | G : (S) controlling
variables G in population S, representing variance M among the variables Y and X. For
example, a model such as VISOVA: Reaction Time ∼ Age | Gender : (LA2K control) rep-
resents changes in reaction time by age across healthymale and female populations. There
should be significant difference in the association between variables X when conditioned
on the different groups.
Multi-level models are important in neuropsychiatry for many reasons, including their

basic connections with nosology and diagnosis. Among these, a fundamental aspect
of conditioning is that it makes hypotheses differential—they consider not only a base
hypothesis with a single level value, but also alternative level values. For example, a
hypothesis could assert that phenotype profiles differ characteristically for each group
(i.e., level). Without this differential structure, hypotheses are difficult to falsify, and dif-
ficult to make mutually exclusive. As a result they are difficult to verify or contradict, and
they all can be ‘right’. This lack of exclusivity, and the difficulty of grounding hypotheses
in data, impedes progress [37].
ViVA provides a way, even for scientists with little programming experience, to ‘try

hypotheses on for size’ by grounding them in data. It permits selection of any subset of
the 2500 database variables, conditioning on any of 60 group structures in 18 predefined
populations (as well as on all experimental protocols), using any of a large set of standard
variance visualization schemes, without concerns about implementation or details of data
cleaning (because these steps are provided by ViVA). To avoid confusion about scientific
validity of the results, it is also intentionally limited to hypothesis exploration without
hypothesis testing. The exploration process is one of rapid evolution under selection, with
stronger hypotheses surviving.
Amidst the deluge of data in which scientists now find themselves, it is vital to

integrate relevant information with complex hypotheses. ViVA is an example of ways
science can expand from established hypothesis-based processes to more data-driven,
discovery-based processes that benefit from the abundance of information.
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