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Abstract

In omic research, such as genome wide association studies, researchers seek to
repeat their results in other datasets to reduce false positive findings and thus
provide evidence for the existence of true associations. Unfortunately this standard
validation approach cannot completely eliminate false positive conclusions, and it
can also mask many true associations that might otherwise advance our
understanding of pathology. These issues beg the question: How can we increase
the amount of knowledge gained from high throughput genetic data? To address
this challenge, we present an approach that complements standard statistical
validation methods by drawing attention to both potential false negative and false
positive conclusions, as well as providing broad information for directing future
research. The Diverse Convergent Evidence approach (DiCE) we propose integrates
information from multiple sources (omics, informatics, and laboratory experiments) to
estimate the strength of the available corroborating evidence supporting a given
association. This process is designed to yield an evidence metric that has utility
when etiologic heterogeneity, variable risk factor frequencies, and a variety of
observational data imperfections might lead to false conclusions. We provide proof
of principle examples in which DiCE identified strong evidence for associations that
have established biological importance, when standard validation methods alone did
not provide support. If used as an adjunct to standard validation methods this
approach can leverage multiple distinct data types to improve genetic risk factor
discovery/validation, promote effective science communication, and guide future
research directions.
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Introduction
The validation of findings in complex disease research

The accepted gold standard for demonstrating associations in omic research settings,

such as genome wide association studies, is the independent replication of preliminary

findings [1]. Testing for replication involves assessing consistency by trying to repeat

results in an independent sample from the original population with the same analytic

approach [2]. However, many large genetic epidemiology studies and meta-analyses do

not use samples from one source population, and therefore, do not attempt replication

per se, but validation [2]. This conventional confirmation process can help to minimize

false positive findings, and in doing so provides fairly compelling evidence for the exist-

ence of true associations. Although in recent years it has become evident that chance,

limited power, publication bias and a variety of other factors can make this evidence

less compelling than it otherwise would be [3,4]. Unfortunately, this methodology can

also mask many true associations that would otherwise advance etiological research.

Given that the efficacy and efficiency of research depends on reducing both false posi-

tive and false negative conclusions, validation approaches should be developed that can

better prevent both types of erroneous conclusions.

If our goal is to find factors, such as genetic or environmental factors that contribute

to pathophysiology, then we need to consider whether using standard validation meth-

odology alone provides the best approach. In this paper, we propose an additional val-

idation framework that can be used to enhance discovery and validation in omic

research settings, such as transcriptome, exposome, and genome-wide association

studies (GWAS).

Shortcomings of traditional validation

Contemporary validation methods require that disease associations are observable in mul-

tiple study populations. If we acknowledge the heterogeneity of complex disease and the

limitations of observational data, then we should expect that many biologically meaning-

ful associations will not be consistently confirmed by these standard validation methods.

The etiologies of complex diseases may involve multiple causal cofactors, and each of

these factors may have distributions that vary greatly between study populations. We also

know that observational data is often flawed; crucial variables may be unmeasured or in-

consistently measured, and systematic biases can occur in ascertainment, measurement,

study design, and analysis. Thus, there are numerous situations in which a true finding

may fail to be confirmed using the traditional validation approach [5-7].

Additionally, current validation methods may unnecessarily inflate the rate of false

negative conclusions by requiring strict multiple testing adjustments in settings where

false positive conclusions could be effectively minimized with additional confirmatory

data [8]. In other words, a single p-value threshold in a single analysis, no matter how

strict the adjustment for multiple testing, may do a poor job of distinguishing true posi-

tive findings. Zaykin and Zhivotovsky [9] point out that the p-values for true associa-

tions tend to have ranks that are interspersed among p-values for false positive findings

and that these true association p-values are often not found among the most extreme

values. Thus, even strict significance thresholds cannot always separate true positive

from false positive findings, and more evidence will generally be needed to determine

which associations are worthy of follow-up. Multiple testing corrections can reduce
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type 1 errors, but they cannot solve the primary problem, that a single threshold in one

analysis cannot distinguish between noise and signal of the same magnitude.

Finally, even when a finding is robust and traditional validation is observed, it still

might be a false positive [7], and a consistent pattern of bias may explain the results.

Careful validation protocols within one type of data should reduce false positive find-

ings [10] but they cannot prevent false positive findings due to cryptic bias that is in-

trinsic to that single data type (e.g. consistent confounding in the relevant observational

studies that is consistently not accounted for). In other words traditionally-validated find-

ings that have not been examined with diverse methods may still be spurious because

of systematic errors present in the single research approach used. Overall, we know

that p-values have a variety of weaknesses when being used in scientific reasoning

[11,12], and we should recognize these limitations by reinforcing our frameworks for

discovery and validation.

Proposed: a new approach that utilizes Diverse Convergent Evidence (DiCE)

We argue that the conventional procedures for risk factor validation could be enhanced

with the addition of a supplementary method that systematically assesses diverse inde-

pendent lines of evidence. This type of multifaceted strategy could provide useful informa-

tion in the presence of causal heterogeneity, unrecognized bias, imperfect study designs

and other settings where traditional omic validation may yield erroneous conclusions. In

this approach researchers actively gather multiple distinct sources of evidence to assess a

given factor (e.g., variant, gene, exposure, or pathway) in the pathophysiology of interest.

Then multiple findings from various research fields can be combined to gauge whether a

critical mass of evidence implicates a given factor. In this process the weaknesses of one

methodology can be addressed by the complementary strengths of others; for example,

evidence from knockout animal models can support information from genetic epidemi-

ology, and findings from experimental toxicology can strengthen information from envir-

onmental epidemiology.

Here we propose a framework, Diverse Convergent Evidence (DiCE), that can help

researchers to assess the importance of potential factors and decide how to proceed

(Figure 1). DiCE promotes the coordination of complementary information from dis-

tinct fields to guide decisions about which findings are most worthy of follow-up ef-

forts. When considered with the results of standard validation procedures DiCE can be

used to highlight conclusions that may be erroneous (false negative or false positive)

based on a systematic assessment of external knowledge. In its role as a complementary

methodology DiCE does not propose a definitive endpoint or establish a single criterion

for association. Rather, it distinguishes between strong and weak evidence with the in-

tent of guiding subsequent research. This approach reflects the long-known, but rarely

utilized perspective that scientific reasoning can provide guidelines but not rigid criteria

for causal inference [13,14]. Typically, no single piece of evidence is necessary or suffi-

cient for causal inference in complex disease research. If applied appropriately, the con-

sideration of diverse lines of evidence can clarify what additional information is needed

to advance our understanding of a given disease process and help investigators to apply

limited resources intelligently. This framework moves beyond a single narrow approach

for answering questions about complex disease to appropriately reflect etiologic and

inter-dataset heterogeneity when seeking causative factors.



Figure 1 Scoring system concept for prioritizing research findings in complex disease research.
Heat Map image adapted from [47]. Manhattan Plot image adapted from [48]. PubMed image adapted
from the PubMed database website (http://www.ncbi.nlm.nih.gov/pubmed [16]) after typing in “ppar
gamma” (as seen on June 9, 2014). Pathway/network image adapted from [49]. Microscopy images adapted
from [50]. Mouse images adapted from [51]. Underlying images adapted from [47-51] were published under
the creative commons attribution license which allows for re-use without permission (http://www.plosone.
org/static/license http://creativecommons.org/licenses/by/3.0/ http://creativecommons.org/licenses/by/3.0/
legalcode).
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Integrating evidence to calculate a DiCE score

The DiCE system evaluates putative causal factors (e.g. genes or environmental exposures)

in three broad categories of evidence: omic/observational, informatic, and laboratory ex-

periments (Figure 1). As proposed, evidence from each category contributes to a compos-

ite score that reflects the overall strength of the evidence for a factor’s involvement in the

pathophysiology of interest (Table 1 and Figure 2). The score for a given factor is ele-

vated in the presence of diverse convergent evidence. This approach can help researchers

to: 1) characterize the available evidence for a specific factor of interest; and 2) prioritize

findings for further research.

Omic evidence

In this framework a factor receives 1 point for being identified in an omic screening

analysis (e.g. GWAS) and can then receive 3 additional points if it is validated in a sec-

ond omic study using standard methods. The choice of a significance threshold is a

hotly debated topic in the setting of agnostic omic scans. Because a number of signifi-

cance thresholds can be defended, we leave this to the discretion of the researcher, as

long as a consistent rationale is used. In our examples, we use the commonly accepted

multiple testing adjusted significance threshold of p < 5 × 10−8 [15]. To account for

http://www.ncbi.nlm.nih.gov/pubmed/
http://www.plosone.org/static/license
http://www.plosone.org/static/license
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/legalcode
http://creativecommons.org/licenses/by/3.0/legalcode


Table 1 Diverse Convergent Evidence (DiCE) point system concept

Omic/Observational evidence Biological database (Informatic)
evidence

Experimental (Laboratory) evidence

Single Significant Finding Evidence from PubMed, KEGG, GEO,
GO or etc. linking the factor to

the pathophysiology

Evidence from animal or cell/molecular
models demonstrating a role of the

factor in the pathophysiology

Yes (1 point) Yes (3 points) Yes (3 points)

No (0 points) No (0 points) No (0 points)

And Either

Standard Statistical Validation
(3 points) or

Alternative Statistical Validation
(2 points) or

No Statistical Validation
(0 points)
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some of the causes of type II error in standard omic validation attempts, a risk factor

that does not receive the initial 3 standard validation points can still obtain 2 points for

validation through alternative exploratory approaches. Some examples of defensible al-

ternative statistical validation attempts would include: validation by meta-analysis;

validation using a distinct analytic method (e.g. PCA adjusted vs. not, using imputation

vs. not etc.); or validation after accounting for a masking covariate in your analysis (e.g.

stratifying or adjusting for a confounder, or considering an interacting variable). The

lower point value assigned to alternative statistical validation reflects the lower quality

of evidence obtained through these post hoc validation attempts.
Figure 2 Hypothetical DiCE scoring system implementation. Underlying Manhattan Plot image adapted
from [48]. The underlying image adapted from [48] was published under the creative commons attribution
license which allows for re-use without permission (http://www.plosone.org/static/license
http://creativecommons.org/licenses/by/3.0/ http://creativecommons.org/licenses/by/3.0/legalcode).

http://www.plosone.org/static/license
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/legalcode
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Biological database or informatic evidence

To incorporate biological database evidence, a factor can receive 3 points if supportive

evidence is obtained through informatics approaches. This is a broad category that en-

compasses evidence obtained from biological database (pathway or network analyses)

and literature searches. There are a number of approaches that could be used here, in-

cluding systematic searches in PubMed [16], GEO [17], or other NCBI interfaces [18],

as well as KEGG [19], GO [20], or other databases with biological annotations. Again,

as with the omic evidence, the specific type of search employed here is flexible, but it

should be kept consistent to generate comparable results.

Experimental evidence

Laboratory based information is integrated into the total score by adding 3 points if

there are experiments that support the involvement of this factor in the pathophysi-

ology of interest. These experiments may include animal knockout models, cell trans-

fections, and treatment with environmental risk factors such as nutrients, medicines,

or chemicals.

Some data may fit into more than one of the three categories but a single result

should only be counted once. Essentially, this process uses the sum of provisional nu-

merical values from distinct categories of evidence to evaluate the likelihood of a given

finding being true and worthy of subsequent study. We suggest that a total composite

score of ≥ 6 indicates strong evidence. Although the scores themselves are arbitrary,

they convey ordinal information about the available diverse evidence, and there is a

strong rationale for the relationship between the component scores and the chosen

threshold. No single category of evidence is necessary or sufficient to achieve a score

of 6. This threshold requires convergent evidence from at least two categories, but

protects the conclusion from being deleteriously affected if one category of evidence

(out of the three) is missing or flawed. Overall the DiCE process yields a semi-formal

dynamic heuristic that is based in logic and empiricism. The choice of search strat-

egies for implementing the DiCE framework can vary, but a thoughtful implementa-

tion combined with an explicit description of the search details, should consistently

yield useful information.

In this method the points are assigned such that roughly equal weight is given to the

three categories of validation evidence (omic, informatic, and experimental). This is de-

signed into our proposal because it is typically not appropriate to definitively pick one

category a priori as providing better evidence. For example, information from con-

trolled experiments may be worth more when a good and relevant disease model is

available. However, there may be no appropriate assays or models available for labora-

tory work or the available models may not be relevant to human physiology. The situ-

ation is even worse if the research community thinks they have a pertinent disease

model, but is unaware of its fundamental failings. Observational omic data that comes

from humans most likely has relevance to human disease. However, issues such as

measurement error and confounding may make observational data problematic, and it

is not always clear when these complications are present and unaccounted for. Having

approximately equal weights for the three evidence categories makes the total score

relatively resilient to the known and unknown failings of each type of evidence and pro-

vides no systematic and clear bias in score assignment.
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One could consider developing a more nuanced DiCE scoring rubric, by attempting

to quantify the number of total validations or rate of validation successes within each

evidence category. However, this approach could defeat the purpose of the method.

The number of validations within one category and the validation rate within each cat-

egory do not always have a clear and consistent relationship to the truth of the finding

in question, and we propose that at this point they should not be folded into the rubric

because of added ambiguity. These issues could be reconsidered for future modifica-

tions to the DiCE system.

Overall, DiCE is a dynamic heuristic approach that promotes the collection and inte-

gration of diverse evidence for scientific decision making. The DiCE score and the

follow-up directions it suggests can change as the available evidence changes.

Utility of the DiCE supplementary validation approach: empirical cases

Genetic resistance to severe malaria

In 2009 Jallow et al. published the results of a case control GWAS that searched for

genetic variants associated with resistance to severe malaria [21]. This study is of inter-

est because at the time of publication there were several previously established genetic

variants that were known to confer malaria resistance, including the Hemoglobin S al-

lele, which reduces the risk of severe malaria ten-fold. However, the Hemoglobin S sig-

nal (i.e. p-value for a marker SNP) did not achieve genome-wide significance at the

5 × 10−8 level [15] and none of the other known genetic risk factors (e.g., G6PD) met

this criterion. The authors discussed several reasons for the failure to identify known

loci, including low LD between the marker SNPs and the causal variants in their popu-

lations, and low frequencies of the causal variants in their populations. They were,

however, able to attain significance by fine mapping at the Hemoglobin S locus, which

was already known to associate with malaria from prior diverse evidence.

This highlights the importance of using more than one approach for causal factor iden-

tification, as information from independent lines of evidence prevented this variant from

being overlooked even though it was missed by GWAS. The DiCE validation strategy pro-

actively supports the collection of multifaceted evidence so that important signals are not

missed due to the flaws of a single study, criterion, or method. Here we use the search for

malaria resistance genes to demonstrate how our approach can help to characterize the

strength of available evidence for specific factors and clarify future research directions.

Hemoglobin S and malaria resistance

Using the DiCE scoring system we find that the evidence for the involvement of

Hemoglobin S in malaria resistance is strong (Table 2), with a total score of 9, even

though it failed traditional significance thresholds for genome wide association in the

initial GWAS. The implementation details for these analyses are provided in Additional

file 1. Other analytic choices could be utilized but a consistent approach should be ap-

plied throughout the implementation.

We argue that a score of 9 provides extremely strong evidence, only possible in the

presence of multiple convergent lines of evidence. In this case, we can definitively say

that adherence to a single conservative analytic approach would have obscured a find-

ing of biological interest. Rather than dismissing alternative omic analytic strategies,

this system simply adjusts the score to reflect the reduced quality of statistical evidence



Table 2 Results of implementing the DiCE evidence scoring system in four contexts

Gene and phenotype Omic/Observational
evidence

Biological
database
evidence

Experimental
evidence

Total
evidence
score*

Single finding Validation

Hemoglobin S and malaria resistance
(a positive control that would not be
detected with traditional methods)

1 2 3 3 9

ATP2B4 and malaria resistance (new lead) 1 2 3 3 9

MARVELD3 and malaria resistance (new lead) 1 0 0 0 1

PPARγ and type 2 diabetes (another positive
control that would not be detected with
traditional methods)

0 0 3 3 6

*a total score of 6–10 is considered strong evidence.
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that comes from non-traditional exploratory approaches. This example serves as a

proof of principle for the DiCE approach and it also demonstrates that method can

highlight reasonable directions for future research (see Additional file 1).

ATP2B4, MARVELD3, and malaria resistance

A GWAS by Timmann et al. reported the putative association of two new genes with

malaria resistance. Several SNPs were detected within the ATP2B4 gene (encodes the

primary erythrocyte calcium pump) and one SNP was identified in an intergenic region

near MARVELD3 (encodes a tight junction associated protein in vascular endothelium)

[22]. Here we apply our method to these new findings to prioritize them for follow-up

(see Additional file 1).

ATP2B4 accrued an extremely strong score of 9 using our method (Table 2). Here

again alternative statistical validation methods proved useful in helping to prevent an

interesting lead from being overlooked. Our method also highlighted some of the next

research questions related to ATP2B4 (see Additional file 1).

The evidence summary for MARVELD3 was much less compelling with a score of 1

(Table 2). The weakness of the evidence for MARVELD3 at this point reflects that there

is a current dearth of research on MARVELD3 available to corroborate this finding,

and this leaves open the possibility that the SNP may be a false positive finding. How-

ever in this case, a weak DiCE score also suggests another possibility: that this SNP

may be linked to malaria resistance through a mechanism that does not involve MAR-

VELD3. Given that the SNP is near but not in MARVELD3, the function of this SNP in

malaria resistance (if it has one) may not involve MARVELD3. An exploration of other

nearby genes and any known regulatory functions of this region may be fruitful in help-

ing to identify another factor for DiCE to validate with respect to this SNP. In fact,

Timmann et al. notes that the identified SNP (rs2334880) is in an intergenic region be-

tween MARVELD3 and TAT (tyrosine aminotransferase) which are in a head-to-head

configuration. An NCBI search [18] for “tyrosine aminotransferase and malaria” identi-

fies a paper that implicates this enzyme in malaria pathophysiology [23] (yielding a

DiCE Score of 4 for tyrosine aminotransferase). Thus perhaps it is tyrosine aminotrans-

ferase that explains the association with this SNP, and this lead may be worthy of

follow-up. As always it is a judgment call, but unless more observational evidence

makes MARVELD3 more interesting, pursuing laboratory experiments for this gene is
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probably not warranted at this time. Importantly DiCE implementation has helped us

to think systematically about the available data and it can point to next steps even

when it does not point to strong conclusions.

We would argue that Timman et al. alone does not provide compelling evidence for

the involvement of either ATP2B4 or MARVELD3 in the pathogenesis of severe mal-

aria. Importantly, taking a single validation approach in this case does not allow these

leads to be distinguished. If one only considered the p-values, these leads would be al-

most impossible to differentiate in terms of their relative likelihood of being etiologic-

ally relevant, because the p-values for the SNPs in ATP2B4 (6.1 × 10−9, 1.5 × 10−8,

2.1 × 10−8, 5.1 × 10−8, 3.4 × 10−8) and the SNP near MARVELD3 (3.9 × 10−8) are very

similar. However, our simple process quickly characterized these two new leads and

revealed which is currently more worthy of follow-up based on the available diverse

evidence. The evidence for ATP2B4 is strong and suggests specific new laboratory ex-

periments, but the evidence for MARVELD3 is weak, and therefore provides less motiv-

ation for follow-up efforts at this point. The strong performance of our method in the

context of a very well established predictor of malaria resistance, Hemoglobin S, serves

as a positive control (method validation), and this further suggests that the conclusions

about ATP2B4 and MARVELD3 should be useful.

As we pointed out earlier the diverse evidence for MARVELD3 may be weak because

it has not been collected; we do not have much evidence for what we have not expli-

citly studied. Thus, in this case DiCE cannot provide strong evidence either way, and

this is appropriate, as we would argue that strong evidence does not exist in the ab-

sence of diverse validation. However, its implementation has suggested future steps:

1) explore potential functions of this SNP that do not involve MARVELD3 (there is evi-

dence that tyrosine aminotransferase may explain the association between malaria and

this SNP [23]), or 2) see if MARVELD3 is detected in the next genomic screen for mal-

aria resistance. The low DiCE score would indicate for most researchers that MAR-

VELD3 is not worthy of immediate laboratory follow-up. However, a researcher who

already has a well characterized vascular endothelium model in their laboratory may

find it worthwhile to make a MARVELD3 knockout without additional evidence, simply

because the activation energy is low for them. For other researchers, additional omic

validation and some informatic evidence would likely be required to make this finding

worthy of laboratory investigations.

PPARγ and type 2 diabetes

Traditional validation has also proven to have limitations in type 2 diabetes research. In

2007 Williams et al. [24] noted that the well-established target of an entire class of type

2 diabetes drugs (PPARγ [25]) would not have been identified de novo by 3 GWA stud-

ies published that year [26-28] if traditional methods of GWAS validation were rigidly

followed. The p-values for rs1801282 in the three studies were 0.019, 0.0013, and

0.0014, none of which coming close to traditional genome wide significance levels (in

fact, in one of the discovery scans the index SNP had a p value of 0.83). However, the

ORs were consistent (1.09 [95% CI: 1.01-1.16], 1.23 [95% CI: 1.09-1.41], 1.20 [95% CI:

1.07-1.33]), and a meta-analysis of the three studies, most likely pursued because the

PPARγ locus was already known based on non-GWAS-based evidence [25], yielded a

small p-value, though it was still not genome wide significant (p = 1.7 × 10−6). In other
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words, an enormous amount of expensive GWAS research would not have led us to

this type 2 diabetes drug target without some augmentation of traditional validation

processes. However, if we apply DiCE, the method correctly characterizes the evidence

for the biological relevance of PPARγ as strong.

Evidence for PPARγ in type 2 diabetes achieved a score of 6 (Table 2 and Additional

file 1). A score of 6 is strong evidence for the involvement of PPARγ, and because we

already know its importance in type 2 diabetes therapy, this example serves to validate

DiCE. Here we again demonstrate that adding the DiCE validation framework can allow

for the detection biologically important signals where standard approaches to validation

fail. The example of PPARγ in type 2 diabetes also illustrates that it may be worthwhile

to gather additional evidence on all hits with a p-value < 0.05 (or even p < 0.1). Further-

more, there is published evidence from the International Multiple Sclerosis Genetics

Consortium which demonstrates that this type of comprehensive validation effort can

be very fruitful [29]. If one is interested in filtering a large list of nominally significant

findings (p < 0.05) to identify a subset most worthy of follow-up, instead of characteriz-

ing the evidence for a single finding, our flexible scoring system can be utilized in this

setting as well. There will be many hits to follow-up for most complex diseases, but

these efforts should be worthwhile because DiCE allows us to better interpret omic

data in light of other biologically relevant signals.

Discussion
In this paper we have proposed a supplemental analytic framework (DiCE) to improve

discovery and validation performance in omic research settings such as GWAS. This

method promotes the collection of diverse evidence in order to leverage its inherent re-

sistance to the systematic failings that are possible with single approaches. Additionally it

allows for the coordination of varied evidence to effectively guide future research. We

have also illustrated the validity and utility of the DiCE strategy using four case studies:

two proof of principle examples and two exploratory examples. The proposed scoring sys-

tem is subjective, as is a nominal p of 0.05, but it accomplishes the major goal of combin-

ing multiple data types into a unified framework for evidence assessment.

R.A. Fisher, the father of p-value based inference, provides us with evidence that the

application of a thoughtful yet subjective convention can be very productive. He did

not view the 5 % false positive rate threshold as an immutable postulate but rather as a

convenient evidence benchmark that could guide scientific decision making [30,31]. “If

P is between 0.1 and 0.9 there is certainly no reason to suspect the hypothesis tested. If

it is below 0.02 it is strongly indicated that the hypothesis fails to account for the whole

of the facts. We shall not often be astray if we draw a conventional line at 0.05 . . .” [32]

Thus, much of our biomedical research progress in the last 80 years has been based on

a metric that is subjective and imperfect, but useful. We propose that we can address

some of these imperfections and better identify important biological results by consid-

ering additional carefully chosen guidelines.

The overall objective of DiCE is to encourage the collection of data in several cat-

egories, since no single category is typically necessary or sufficient to supply compel-

ling evidence of causation. With this method if one category of evidence is

unavailable or biased the direction of future research will not necessarily be deleteri-

ously altered. In addition, this approach depends on interdisciplinary coordination,
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which can build bridges among researchers from disparate fields, improving the speed

and quality of discovery.

Of course, as with any approach to evidence synthesis the efficacy of this method will

depend on the quality of the available prior studies and their annotation as well as the

technology used to access this information. The utility of this strategy will be limited

where relevant information does not exist, is derived from flawed studies, or is difficult

to access. Researchers with expertise in the relevant subject matter and methodologies

should be consulted when the value of a piece of evidence is in question. Furthermore,

Chanock et al. 2007 provides a detailed list of considerations to help guide researchers

when making study quality assessments [1]. These judgments may be particularly im-

portant in the context of low quality omic studies that could provide a poor foundation

for directing further inquiry. Essentially, this approach will be useful where it is

thoughtfully applied. Furthermore, with the advent of modern text-mining methods this

approach can be semi-automated for use in high throughput examination of multiple

findings prior to human interpretation.

Widespread application of DiCE also has the potential to increase the credibility of

biomedical research by appropriately conveying uncertainty to all audiences and in-

creasing likelihood that highly publicized findings will have biological relevance. Re-

viewers and editors may still require a specific level of statistical evidence (e.g. p < 5 ×

10−8), but with the addition of a DiCE score both significant and non-significant p-

values can be better contextualized in terms of their likelihood of having biological rele-

vance in the pathophysiology of interest. Published findings will be as accessible as they

were before DiCE, but bold interpretation, publicity, and translation attempts will be

hard to defend in the context of a low DiCE score. A DiCE score can allow readers to

quickly gauge the corroborating evidence from beyond the paper they are reading, and

a low DiCE score can encourage the lay press to include appropriate caveats in their re-

ports or to wait until the evidence is stronger before reporting. If a preliminary finding

is exciting and diverse evidence has not been collected, a low DiCE score should en-

courage researchers to collect the remaining evidence without delay, and thus the qual-

ity of the finding should be quickly ascertained. Thus DiCE scores can be expected to

have a dynamic and productive interplay with the literature. Overall, this method

should improve the research dissemination process by providing a simple metric for

journals, researchers, the media, and the general public to better vet findings. Further,

by providing a diverse range of evidence, a wider range of domain experts can weigh in

on scientific findings, rather than with the current scenario where most results are re-

ported to and evaluated by a very specific group of domain experts. This should pro-

mote the broad evaluation and sharing of a given set of results, allowing for better

guidance and coordination future research directions.

Logistics: DiCE scores can be quickly added and easily incorporated into any GWAS report

DiCE is designed to provide information that complements standard statistical valid-

ation methods. Thus DiCE can be used to systematically characterize GWAS significant

hits to assess for the likelihood of false positive conclusions and suggest future research

directions. It can also be used to characterize a small number of sub-threshold statis-

tical associations (e.g. those with the 10 smallest sub-threshold p-values) to assess for

the likelihood of false negative conclusions. The utility of DiCE may be expanded
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with the development of semi-automated procedures for calculating DiCE scores.

With semi-automated implementation protocols DiCE could be applied to all nomin-

ally significant GWAS findings to detect possible false negative conclusions in this

larger group.

Why allow for omic analytic strategies that do not adhere to rigid multiple testing

adjustments?

Strict multiple testing correction results in the inefficient use of expensive data. Omics

technologies such as GWAS can produce a list of candidate factors enriched for answers,

but they cannot produce a list of answers. Our traditional omic analytic methods for the

discovery of factors influencing pathology implicitly assume that complex diseases have

simple etiologies (i.e. no covariates or interactions will affect independent validation), and

that observational data is virtually devoid of cryptic bias, confounding, and measurement

error. If we strictly adhere to simplistic models, we will fail to access the substantial

amount of knowledge that is embedded in findings that fail standard validation.

The desire to require extremely small p-values flows, in part, from the laudable aspir-

ation to reduce the number of false positive findings. However, this approach increases

the likelihood of false negative conclusions, the cost of which is not trivial. The require-

ment of very small p-values also reflects the expectation that simple answers will flow

from omic tools. We use significance thresholds that give us a small number of answers

to consider, and squeeze datasets so tightly that only the most extreme findings are

considered valid. Accepted omic results may only be this extreme from a combination

of true effects and chance. To obtain a GWAS significant result, one needs: 1) a large

effect size; 2) a precise effect estimate; or 3) luck. Large effect sizes are uncommon in

complex disease; therefore, we attempt to increase the precision of estimates with large

sample sizes (which may be counterproductive if heterogeneity is increased when add-

ing participants). However, we often depend on the luck of the draw (cf. “winners

curse”) [33,34], when we insist on extreme levels of certainty from a single analysis.

It should also be noted here that the rationale behind multiple testing adjustments

and their use in certain contexts has been exposed to important criticisms in the last

25 years [35]. In 1990 Kenneth Rothman proposed that attempting to reduce the num-

ber of false positive findings with multiple testing adjustments can hinder observation

and impede the advancement of science. “An association that would have been interest-

ing to explore if examined alone can thus be converted to one that is worth much less

attention if judged by the criteria based on [multiple comparison] adjustments. Since

other associations in the set of comparisons may have no bearing on the one in question,

the upshot is that irrelevant information from the data can diminish the informativeness

of an association of possible interest.”

With the advent of omic research designs, and the development of new options for mul-

tiple testing adjustment, Rothmans’s analysis has become even more important, and a

number of authors have extended his comments, including Bender and Lange [36]: “ . . .

in exploratory studies without prespecified hypotheses there is typically no clear structure

in the multiple tests, so an appropriate multiple test adjustment is difficult or even impos-

sible. Hence we prefer that data of exploratory studies are analyzed without multiplicity

adjustment . . . To confirm these results, the corresponding hypotheses have to be tested in

confirmatory studies.”
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Recently, Williams and Haines revisited and extended these lines of thought [8]. They

emphasized that relative importance of type I and type II error is dependent on the

stage of the research, and that requiring both multiple testing correction and independ-

ent validation causes an unacceptable number of meaningful leads to be ignored. If one

is early in the discovery process and has the capacity to gather follow-up evidence then

type II errors should be of greater concern because the type I errors will be corrected

but the type II errors will not be. “We argue that when examining an array of nomin-

ally positive findings, statistical stringency alone does not permit us to determine which

findings are by chance and which are not, and therefore, setting too stringent cutoff for

Type I error criterion for association decreases power to find real associations.”

DiCE further extends these ideas by emphasizing that the processes of validation

should be dependent on diverse evidence, because this better addresses the type I/type

II error problem, as well as other recognized and unrecognized weaknesses of omic

analyses. With this method we have not abandoned our concern for type I error. We

still value the evidence that comes from small p-values and rely on independent con-

firmation, but we now deliberately acknowledge the importance of type II errors and

proactively attempt to reduce them.

To the extent that our approach streamlines the consideration of diverse convergent

evidence, it can speed up the progression from omic findings to interventions.

Comparison of DiCE to existing procedures for knowledge integration

DiCE is a semiformal, dynamic heuristic that reflects the strength of available diverse

convergent evidence, and it is designed to supplement standard statistical validation

procedures. This makes it different from most statistical analytic approaches, but there

are some useful comparisons to be made with other methods. In particular, discussing

Meta-analysis, Inter-Rater Reliability, and Inference Ranking techniques should help to

contextualize the role of DiCE in high throughput genetic research.

In genetic research meta-analysis typically utilizes fixed effect models to integrate in-

formation from multiple observational studies to estimate a single association magni-

tude (and p-value) for a given SNP [37]. Thus, it is most useful when the association

magnitude for a given variable is effectively universal (i.e. not context dependent). In

contrast, DiCE scores integrate available information from observational studies, bio-

logical databases, and experiments to provide a structured assessment of the likelihood

of biological relevance of a given SNP. This is very useful information when the ob-

served association magnitudes vary by context (genetic or environmental background),

or the observational studies share a consistent bias that generates a precise yet inaccur-

ate association magnitude.

The fixed effect meta-analyses typically used in discovery genomics settings obtain a

single omnibus effect estimate by assuming the heterogeneity of effect size is due to

random error [37]. However, we know that context dependent associations and differ-

ential biases can also generate heterogeneity. Thus, this assumption may often be un-

reasonable, and there is a need for discovery approaches that have utility when the

effect size variation is not due to random error. Random effect meta-analyses can better

account for population specific heterogeneity but they still yield one “average” associ-

ation magnitude, and they likely won’t clarify if the heterogeneity is due to context

dependent effect sizes or differential biases. However, DiCE should have utility in these
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settings because the DiCE score is unlikely to be elevated when significant omic find-

ings are driven purely by bias or random error. A high DiCE score in the context of

heterogeneous omic study results suggests that the significant associations may be due

to a true context dependent association rather than random error or differential bias. A

low DiCE score in this setting suggests that random error or differential bias may have

generated the significant associations, or that relevant informatic/experimental evi-

dence has not yet been collected.

Conceptually the DiCE score is similar to an ordinal inter-rater reliability (IRR)

metric [38] in a setting where there are 3 “raters”: omics, informatics, and experiments.

Each “rater” provides an assessment: found any evidence of biological relevance or

found no evidence of biological relevance. More concordant responses result in a

higher DiCE score. Important comparisons can also be made with inference ranking

systems from Environmental Health and high-throughput Toxicology. Because it is not

currently feasible for researchers to thoroughly assess the safety of every chemical that

humans may be exposed to, researchers must prioritize their efforts to identify chemi-

cals likely to pose the greatest risk to public health based on currently available evi-

dence. In this setting, integrating diverse evidence into a rank score helps guide the

direction of future research as well as facilitate science communication and decision

making [39,40]. Thus, diverse evidence based prioritization systems have established

their utility in an analogous high throughput data setting. Furthermore, approaches that

leverage convergent evidence have already shown some utility in guiding genetic ana-

lyses [41-44], and now DiCE expands this concept and provides an accessible protocol

that should facilitate its wider use.

Conclusion: Diversify validation strategies to advance the progress of research

In this paper we present a new method (DiCE) for improving the detection and validation

of relevant biological signals in omic data by proactively considering diverse evidence. This

approach provides a chance to strengthen our validation strategies and advance the progress

of research. We argue that DiCE, when properly implemented, should leverage multidiscip-

linary information to reduce rates of both false positive and false negative conclusions.

Standard validation protocols implicitly assume that there is one truth (i.e. a marginal find-

ing) and it will be discoverable no matter what the contextual background (covariates,

biases, confounding). Furthermore, these validation procedures, when used in isolation, can

lead to incorrect conclusions when there is a consistent bias in the observational studies.

Therefore, many causal factors will go unnoticed and some meaningless “hits” may be over-

interpreted without the development of additional validation approaches, such as DiCE.

The utility of gathering diverse classes of evidence in the context of complex disease re-

search is not a new idea [45], but in current research practice the simplicity and allure of

rigid statistical criteria often overshadows this basic concept. We should not forget that

statistical criteria are very important tools but not substitutes for more complete scientific

investigation and reasoning. Our framework is designed to promote this kind of compre-

hensive scientific reasoning. The recent improvements in observational research tech-

nologies/algorithms, informatics/systems biology resources, and laboratory based disease

models have the potential to greatly advance research efficiency and productivity, if

thoughtfully coordinated. These guidelines should promote the synergy that will allow

these technologies to deliver on their promises.
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Definition of terms as used here

Replication

An attempt to assess the consistency of association by trying to repeat the results in an

independent sample from the original population with the same analytic approach [2].

Validation

An attempt to assess the consistency and generalizability of association by trying to re-

peat the results in an independent sample from a different population using either the

same analytic method or a different approach [2].

Cofactor

A component cause or causal cofactor (e.g. biological factors that physically interact to

generate pathogenic mechanisms). Component causes are factors that are insufficient

to cause disease by themselves but can help cause disease when they occur with other

component causes. For more details see [46].

Covariate

A variable that may impact the estimated association between the variable of primary

interest and the outcome (via confounding, interaction, and etc.) A covariate may have

this impact through causal or non-causal (correlational) relationships. If not properly

considered in the analysis covariates may generate bias in the estimated association be-

tween the variable of primary interest and the outcome. Cofactors are covariates that

may influence estimated associations through causal mechanisms.

Additional file

Additional file 1: Implementation examples for the Diverse Convergent Evidence (DiCE) Scoring System.
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