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Abstract

Background: Networks are commonly used to represent and analyze large and
complex systems of interacting elements. In systems biology, human disease networks
show interactions between disorders sharing common genetic background. We built
pathway-based human phenotype network (PHPN) of over 800 physical attributes,
diseases, and behavioral traits; based on about 2,300 genes and 1,200 biological
pathways. Using GWAS phenotype-to-genes associations, and pathway data from
Reactome, we connect human traits based on the common patterns of human
biological pathways, detecting more pleiotropic effects, and expanding previous
studies from a gene-centric approach to that of shared cell-processes.

Results: The resulting network has a heavily right-skewed degree distribution, placing
it in the scale-free region of the network topologies spectrum. We extract the
multi-scale information backbone of the PHPN based on the local densities of the
network and discarding weak connection. Using a standard community detection
algorithm, we construct phenotypemodules of similar traits without applying expert
biological knowledge. These modules can be assimilated to the disease classes.
However, we are able to classify phenotypes according to shared biology, and not
arbitrary disease classes. We present examples of expected clinical connections
identified by PHPN as proof of principle.

Conclusions: We unveil a previously uncharacterized connection between
phenotype modules and discuss potential mechanistic connections that are obvious
only in retrospect. The PHPN shows tremendous potential to become a useful tool
both in the unveiling of the diseases’ common biology, and in the elaboration of
diagnosis and treatments.

Keywords: Diseasome, Phenotypes, GWAS, Network, Information theory,
Biological pathways

Introduction
In this age of system-wide biology, in which organisms and their environment are con-
sidered as a whole, a new field has emerged; studying diseases in relationship to one
another. Pioneering studies, such as Goh et al.’s [1] have resulted in the definition of the
Human Disease Network (HDN). Elucidating relationships between human traits or dis-
eases is becoming increasingly - genetic disorders. These traits may be related through
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shared genes, proteins, or regulatory elements, and identifying commonalities that may
reveal shared biological mechanisms. Ultimately, a thorough understanding of these con-
nections will provide tools necessary to design drug targets. The potential for increased
biological understanding, and the future clinical impact, justifies the creation of methods
optimized to explore the full phenotype genotype spectrum. Genome-wide association
studies (GWAS) have helped identify genetic and environmental variants that affect sus-
ceptibility to human disease using an agnostic, or hypothesis-free, approach. Such studies
offer the promise of personalized diagnostics, prognostics, and medical treatments [2].
Moreover, they provide us with an unprecedented ability to study the genetic interac-
tions between seemingly unrelated traits. To date, approximately 6,000 single nucleotide
polymorphisms (SNPs) have been reported as genetic risk-variants for 800+ diseases
and traits. Combining data from hundreds of GWASs, takes advantage of the infor-
mation gained about genotype-phenotype relationships beyond the scope of any single
study. This approach provides a novel perspective to integrate genetic, cellular, physio-
logical and clinical data to elucidate the pathobiology of many traits. To this end, modern
computational methods, utilizing integrated modeling, are critical as these methods can
tackle unprecedented volumes of data. Computational methods are, however, only as
good as their translatability into usable observations. Because of the sheer complexity
and the number of phenotype-interactions, the usable models need to be intuitive and
scalable and have the ability to filter “irrelevant” information, and highlight commonal-
ities between phenotypes. Modeling complex biological systems using network analysis
offers a promising approach to evaluate the macro-relationships between these biologi-
cal components, particularly between certain phenotypes and diseases. Indeed, networks
offer relatively straightforward and intuitive representations of interaction phenomena,
and allow sophisticated statistical analysis of their intrinsic properties. In addition, meth-
ods derived from information sciences and social sciences have proven to leverage the
network topology as a source of knowledge, offering sophisticated filtering and grouping
techniques. Moreover, these methods work regardless of the actual underlying data type
and are therefore applicable to complex networks of phenotypes.
We present the Pathway-based Human Phenotype Network (PHPN), a biological

pathway-based mathematical model of a network of human phenotypic traits (PT) visu-
ally represented as graphs. Previous network-based studies of diseases have proven useful
for envisaging large disease datasets grouped by common genes, similar gene expression
profiles, or shared protein interactions [1,3,4]. However, a gene-centric focus has biased
the generation and interpretation of these networks, as coding regions constitute less than
2% of the human genome. In a previous study [5], we focused our efforts on constructing
sets of risk-associated single nucleotide polymorphisms (SNPs) and SNP bins in linkage
disequilibrium to find commonalities between PTs; this SNP clustering approach success-
fully overcame some weaknesses of previous gene-centric models. In the present article,
we describe a method of building a PHPN relying on biological pathways rather than
genes.We link PTs that have shared pathways, using mapped genes from GWAS data and
gene-to-pathway associations from Reactome, a curated pathway database. Furthermore,
we extract the information backbone using Serrano et al.’s disparity filter [6], to capture
the most relevant information from the extremely dense network that results from raw
data. Finally, we classify each PT in the network and build communities or modules of PTs
that are strongly linked, and therefore, show evidence of pleiotropic effects and shared
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biology. These groups are formed independently of the actual disease classes, based solely
on intrinsic network properties.

Background
In this section, we define the fundamental concepts used in the Methods section below
to build the PHPN.

Genetic data

The catalog of published GWAS maintained by the National Human Genome Research
Institute (NHGRI) at the National Institute of Health aggregates studies that report
phenotype-to-SNP(s) and phenotype/SNP-to-gene associations (http://www.genome.
gov/gwastudies/). The NHGRI catalog, downloaded in March 2013, was the primary
source of PT-to-gene to association data. It reports over 800 PTs associated with
approximately 2,300 genes and 6,000 SNPs.
Biological pathways represent elaborate series of cascading biochemical reactions

occurring within the cell, and possibly receiving external signals [7]. Pathways govern all
major cellular functions, such as cell cycle, cell respiration, or apoptosis (programmed
cell death). Biochemical compounds, (e.g. nucleic acids, proteins, complexes and small
molecules) participating in reactions form a network of biological processes and are
grouped into pathways. Reactome is an open-source, open access, manually curated and
peer-reviewed pathway database (http://www.reactome.org). It visually displays struc-
tured information about the elements, enzymes, and genes (via their gene products)
within many known pathways. The Reactome database was accessed in March 2013.

Networks

Networks (or graphs) provide a means of intuitively visualizing and characterizing com-
plex systems, and have proven to be particularly valuable in modeling biological systems.
The statistical analysis of the graph properties offers a quantitative and holistic means of
revealing underlying connections among vertices, as well as the emergent global proper-
ties. Networks are being used with increasing frequency to analyze large-scale systems.
A network, such as PHPN, can take an extraordinarily complex system and reduce it to a
relatively simple form, revealing underlying connections and important clustering details
that would not be evident from studying individual or non-complex relationships among
traits [8].
Formally, a network is a collection of nodes and edges connecting them. The degree,

k, of a node is the number of edges incident upon the node, and the degree distribu-
tion, P(k) of the network, describes the fraction of nodes in the network with degree k.
The degree distribution also characterizes global properties of the graph and how the
nodes are connected to one another; for example, if they are connected at random,
the nodes’ degrees are expected to be homogeneous, and the degree distribution would
a uniform binomial distribution. More often in biology, networks are highly heteroge-
neous, with a “heavy-tailed” degree distribution, placing them in the scale-free family.
This means that the degree distribution follows a power law, or exponential decay.
Within the network, this translates into the presence of “hubs” – a minority of highly
connected nodes. When the degree distribution of a “scale-free” network is plotted
on a logarithmic scale, the resulting curve is approximately linear across the top [8].

http://www.genome.gov/gwastudies/
http://www.genome.gov/gwastudies/
http://www.reactome.org
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In the case of relatively small networks, it is impossible to demonstrate the presence of
a scale-free network. We can, at best, show the existence of a power-law type degree
distribution, and not dismiss the scale-free hypothesis. The clustering coefficient (CC)
of a network measures the degree to which nodes tend to form closely knit communi-
ties with a higher than average connectivity [9]. The CC of networks found in nature,
in particular social and biological networks show a higher degree of clustering than that
observed in randomized networks of identical size. The average path length of a net-
work (APL) represents the average of the minimum number of edges separating any two
vertices.
In our study, we build a bipartite network [10], consisting of two disjoint sets of nodes.

The nodes are connected in such a way that the nodes of one set will have no con-
nections between them, but can only be connected to nodes of the other set. The use
of a bipartite network is natural when dealing with two different types of data sets
(Figure 1b), in our case phenotypes and pathways. Two nodes of the same type can-
not connect with each other, so one node can only be connected to a node of the
other data type. We used a bipartite networks to construct the relationships of our
data.
From the bipartite network, one can project the data onto either of the data spaces

(Figure 1a,c). In either single dataset space, the nodes are connected to one another
through a vertex of the other space. By ignoring the different types of data, all network
properties described above remain valid on the bipartite network (as a single data set net-
work) and on either projection. This type of network gives us three degree-distributions,
one for each projection, and one for the bipartite network. Each degree distribution shows
howmany links each node has. Nodes in a projection of a bipartite network are connected
if they share at least one node in the other group. This gives us the ability to visualize
connections within a group.

Human disease networks

In recent years there has been a trend toward studying disease through network based
analysis of various systems of connections between diseases. The result was the Human
Disease Network (HDN) [1]. The nodes in the HDN represent human genetic disorders
and the edges represent various connections between disorders, such as gene-gene or
protein-protein interactions, to name a few. The HDN is helpful in visualizing connec-
tions among human disorders on a large scale. The underlying connections of the HDN

Figure 1 Bipartite network schematic. A bipartite network (b)made of 2 data sets the “circles”, and the
“rectangles”. Projections in the “circle” space (a) and in “rectangle” space (c).
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contribute to the understanding of the basis of disorders, which in turn leads to a better
comprehension of human diseases.
One study by Goh, et al. [1], explored the HDN built on genes shared by different

diseases. Another study, which is similar in some ways to ours, by Li et al. [11] traced
the SNPs connecting disease traits. In 2009, Silpa Suthram et al. [12] found that when
diseases were compared by an analysis of disease-related mRNA expression data and the
human protein interaction network, there were significant similarities between some dis-
eases and between some drug treatments. In 2009, Barrenas et al. [4] further studied the
genetic architecture of complex diseases by doing a GWAS, and found that complex dis-
ease genes are less central than the essential and monogenic disease genes in the human
interactome. In the present work, we expand our study to include not only disease traits,
but also behaviors and normal variations in humans, such as hair color, and explore large
portions of non-coding variants in the human genome. Links between PTs are based on
overlapping biological pathways (Section “Pathway-based human phenotype network”).

Pathway-based human phenotype network
In this paper, we chose to mesh the methods and results sections, as we present multiple
different algorithms (i.e. to build, filter, and identify the modules in the PHPN). Each
subsection presents and applies a new method, building on the resulting network of the
previous one.

Building the PHPN

Here we describe our method to construct a network of human phenotypes (traits and
diseases) based on shared biological pathways of the associated genes. This is accom-
plished by linking genes to phenotypes (PTs) from hundreds of GWAS catalogue at
NHGRI. Genes were further linked to pathways (PWs) using Reactome. By building these
associations, we were able to link phenotypes with genes involved in the same pathways.
The steps used to build the network are illustrated in Figure 2 and described as follow:

1. From the NHGRI catalog, extract all PTs and link them to their mapped genes. PTs
with no mapped genes are omitted;

Figure 2 Model of how the PHPN was built. Phenotype-to-Gene associations were obtained using the
NHGRI GWAS catalog, while gene-to-pathway associations were obtained using Reactome. Edges were
drawn between phenotypes with overlapping pathways. Edge weights represent the number of overlapping
pathways. PT indicates Phenotype, PW indicates Pathway.
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2. From Reactome, extract all genes in the database and link them to their associated
pathways;

3. Match the genes associated to each phenotype to their associated pathways;
4. Connect PTs with overlapping pathways with an undirected edge, setting edge

weight as the number of overlapping pathways.

We filter out isolate PTs with no connections to the rest of the network. We are only
interested in PTs that have been associated with a gene, and their possible shared biology.
The original NHGRI database contains over 800 PTs; by removing the isolate nodes, the
PHPN contains 401 nodes connected to at least one other node.
This flexible process of building phenotype-gene-pathway associations also allowed

us to examine the network from multiple configurations. Specifically, we were also
able to construct a pathway network following the same logic as the HDN (Section
“Human disease networks”): connecting pathways based on shared phenotypes, as well as
a bipartite graph with links between PTs and pathways.

The bipartite network

The Bipartite Network: The bipartite network consists of 1523 vertices (408 PTs, 1115
PWs) and over 10,000 edges, with an average degree k ≈ 7 (Figure 3). We do not show the
intermediate stage of the genes, as this makes the network difficult to interpret. Indeed,
highly connected PT are connected to 40+ PWs, and highly connected PW, to 100–300
PTs. Height is clearly associated with most pathways, forming a major hub in the PHPN.
However, it is safe to suppose that the size of the height hub represents a bias because
it is recorded in most studies. It is unclear what the implications of this and other data
biases are.

The unfiltered PHPN

The Unfiltered PHPN: Because we focused this study on phenotypic connections, we
projected the bipartite network presented above onto the “phenotype space” (Section
“Networks” and Figure 1.) The vertices in this network are only the PTs. We draw an
undirected edge eij between two PTs i and j if they are associate to at least one common
pathway. The weight ωij of an edge eij is simply the number of pathways the pheno-
types have in common. The result of the projection is the unfiltered Human Phenotype
Network 4. It has 814 nodes and over 40,000 edges. Once the 406 isolate nodes are
removed, the remaining 408 PTs and 41K edges for in a single connected component and
an average degree k̄ ≈ 200. Figure 4 offers a taste of how dense the network really is at
this stage.

PT #PW PW #PT
Height 49 Metabolic

pathways
296

Cholesterol 45 PI3K-Akt signal-
ing pathway

139

Metabolic traits 42 Pathways in
cancer

123

Figure 3 Unfiltered bipartite phenotypes-pathways network andmost connected phenotypes and
pathways. The three most connected PTs and the number of associated pathways (#PW), and the most
connected PWs and the number of associated #PTs. The top (blue) row of vertices represent the phenotypes
and the bottom (red) row of vertices the pathways. The vertices’ sizes are proportionate to its degree. For
readability reasons, we omit vertices with degrees < 24.
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Figure 4 Unfiltered pathway-based human phenotype network. (a) The unfiltered PHPN, with nodes
sizes proportionate to their degree of connectivity. (b) A zoom into the “obesity” region of the PHPN,
including heart disease, and Alzheimer’s disease. (c) The degree distribution of the unfiltered PHPN.

Figure 4 illustrates the sheer density of the unfiltered network and how difficult it
becomes to precisely decipher the results. Even when zoomed in (Figure 4b, the network
is too dense to provide any easily usable information. The degree distribution in Figure 4c
does not give adequate insight into the internal structure of the network. From the results
in this section, it was clear that more work had to be done on the “raw” PHPN in order for
it to reveal key clinical information, both from a visual and statistical perspective. Below
we describe the filtering method used and the new PHPN resulting from this filtering.

Extracting the information backbone

Biological networks, in their raw form, are in general extremely dense. This “hairball
effect” makes interpretation nearly impossible, especially from a visual perspective. Net-
works are, however, first and foremost visual tools. It is their relative intuitiveness and
simplicity that makes them attractive for presenting data to a large audience. To make
the PHPN usable and streamline our analysis, we need to extract the most significant
links from the dense network: the backbone of the PHPN. Because of the scale-free nature
of the PHPN, using a global weight (GW) threshold to eliminate edges is inappropriate.
Instead, we use a multi-scale filtering algorithm outlined by Serrano et al. [6] to extract
the HPN’s backbone. In place of a global threshold, the algorithm takes advantage of local
fluctuations in edge weight to prune edges, while preserving the network’s essential struc-
ture and global properties. Specifically, we apply a disparity filter (DF) to the network; an
algorithm that uses the null hypothesis that the normalized weights of the edges incident
to a given node with degree k are produced by a random assignment from a uniform dis-
tribution. For each edge, we calculate the probability that the edge weight is compatible
with the null hypothesis, which is given by:

αij = 1 − (k − 1)
∫ pij

0
(1 − x)k−2dx = (1 − pij)k−1
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where k is the degree of the node to which the edge under consideration is attached, and
pij is the normalized edge weight, given by:

pij = ωij
si

where ωij is the edge weight and si is the strength of the node under consideration (i.e.
the sum of all weights of edges incident to the node). Edges are then preserved based
on an imposed significance level α; in other words, for each edge, if αij < α, then the
edge is preserved. It should be noted that for each edge the algorithm for the DF pro-
duces two independent values αij and αji based on the two nodes connected by the edge.
In order to resolve this, Serrano et al. propose two alternatives: under the OR rule, edges
are preserved if (αij < α OR αji < α). Under the AND rule, both (αij < α AND αji < α)
in order for the edge do be preserved. After experimenting with both rule types, we
experimentally found the best that conserve the original network properties are obtained
using the more restrictive AND rule. This is due to the sheer density of the unfiltered
network.
Serrano et al. [6] have shown that the backbone analysis is more successful in extract-

ing meaningful links from dense networks than more conventional reduction algorithms,
such as global thresholds, in a variety of data sets, but not to biological data. Specifi-
cally, the algorithm reduces the number of edges while maintaining a large fraction of the
nodes and weights in the unfiltered network, thus preserving many features of the net-
work at all scales. By charting the changes in the number of edges, nodes, total weight
and CC as α is adjusted (Figure 5), we not only demonstrate how these features are pre-
served in our filtered Human Phenotype Network, but also provide a rationale for which
significance level cutoff to use. Indeed, Serrano et al. [6] have shown that these met-
rics give sufficient information about the network over varying values of the threshold
α in order to ensure an adequate filtering of the network while keeping the backbone
intact.
In Figure 5a and the close-up in 5b, we quantitatively identify α ≈ 0.25 that conserves a

CC close to that of the original network, and ∼ 90% of the PTs, ∼ 36% of the weights, and
only ∼ 8% of the edges. The resulting backbone of the PHPN is presented in Figure 6.

Figure 5 How to choose α. The networks average clustering coefficient (CC), percentage of conserved
vertices (% vertices), percentage of conserved edge weights (% weights) and, in (a) and (b) the value of α as
functions of the percentage of remaining edges (% edges). (a) and (b) α varies in [ 0, 1]. We chose α = 0.25,
which yields the best results, % edges = 0.1, and use this value in (c) to identify the global weight cutoff
= 292. Note that curves are reported as functions of % edges, not α, to allow direct comparison between the
DF in (a) and (b) and the GW filter in (c).
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Figure 6 Backbone of the HPN. Backbone of the Pathway-based Human Phenotype Network, including the
modules.

To understand the advantages of the DF over a straightforward GW cutoff, we deter-
mine the cutoff value in Figure 5c that will result in a global cutoff network that also
retains ∼ 8% of the edges. We compare the statistical differences between the resulting
graph of these two filtering methods (Figure 7).
Results in Figure 7 clearly demonstrate the advantages of the disparity filter compared

to a global weight for an identical number of edges. The DF conserves over 90% of the
phenotypes versus ∼ 50% for GW. In conclusion, the backbone keeps more phenotypes
than the GW filtering, for the same number of connections, making the network less
dense. Moreover, the relatively low average degree, the heavy-tailed degree distribution
of the PHPN backbone resulting from the DF filtering, and the high clustering coefficient
and short average path length indicate an interesting module structure.

Figure 7 Statistical properties. Comparing the statistical properties of the disparity filter and the global
weight filter against the unfiltered network. Percentages in parenthesis are in comparison with the unfiltered
network.
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Modules detection

In the medical literature, diseases are grouped in disorder classes according to an ontol-
ogy of the biomedical domain [13]. In the Goh et al. gene-based HPN, they denote the
diseases according to their disorder class [1]. Classes make “bins” in which all diseases
are sorted, according to their “natural class”. Therefore, all cancers are grouped together,
all cardiovascular diseases together, all gastrointestinal disorders together, and so on. We
envisage two major drawbacks to this classification method: the semi-arbitrary nature of
the classes, based solely on qualitative clinical observations, and not on the quantitative
nature of the disorder and its underlying biology. Additionally, the manual classification
is extremely tedious and subjective. We argue that in this case, we can achieve interesting
results by applying a community-detecting algorithm on the filtered PHPN. This method
sorts the phenotypes into classes of phenotypes with shared biology, rather than shared
clinical presentation. Communities, or modules, of nodes within the network can be iden-
tified by maximizing the modularity, a measure of strength of division of a network into
modules [14]. Communities are identified when a group of nodes are found to have more
connections between them than would be expected by random chance, often due to some
shared properties (or in our case shared biology) between the nodes in the community.
The clustering coefficient (CC) measures the degree to which nodes tend to form closely
knit communities with a higher than average connectivity, while a high modularity score
indicates the interconnectedness, and thus the strength of the communities. The Louvain
method of community detection [15] uses a greedy optimization method to maximize
the modularity and determine the most favorable division of network into communities.
It is a widely accepted algorithm to build communities (or modules) within a network
with no expert-knowledge, although other methods, such as Infogram are widely used.
Refer to Lancichinetti et al.’s comparative analysis [16] for more details. We run the mod-
ules detection algorithm on the backbone of the PHPN, extracting the modules detected
(Figure 6).
Themodule detection algorithm identified 11modules, of which 6 are part of the largest

connected component, and 5 are small satellite groups of a few phenotypes. Table 1 gives
the phenotypes in each group with the highest weighted degree, that is, the strongest
connection to PT in the network.
By applying a community detection algorithm to the filtered network, we are able

to classify traits and disease by quantifying their shared genetic mechanisms. This

Table 1 Modules of the PHPN

BLUE RED GREEN PURPLE
module (31) module (36) module (40) module (201)

Ulcerative colitis Obesity-related traits Inflammatory bowel disease Triglycerides

Rheumatoid arthritis Visceral fat Systemic lupus erythematosus Metabolic syndrome

Crohn’s disease Multiple sclerosis Type 2 diabetes Metabolic traits

Schizophrenia Bipolar disorder Fasting glucose-related Cardiovascular disease

and schizophrenia traits risk factors

Immunoglobulin A Breast size Body mass index Lipoprotein-associated

phospholipase A2

activity and mass

Parkinson’s disease ADHD Birth weight C-reactive protein

The colors correspond to those in Figure 6. The number in parenthesis is the number of PT in the module.
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classification allows us to identify non-intuitive relationships between diseases and traits,
elucidating the shared etiology for certain phenotypes.

Clinical and biomedical implications
The appropriateness of the PHPN was assessed by examining specific edges within
communities (Figure 6). Specially, we interrogated pairwise connections within the com-
munity shown in blue and asked (1) whether any constitute links between phenotypes
previously known to share biological connections and (2) if they do not contain known
relationships, can we understand how they may be indirectly linked based on the pri-
mary literature; thereby providing novel insights that are not only reasonable but easily
visualized using our method.

HDL cholesterol (HDL) and Alzheimer’s disease (AD)

The apolipoprotein E (APOE) gene is the most significantly associated gene with AD
[17,18] and is also highly associated with multiple lipid traits [19-22]. The existence of an
edge between HDL and AD in our network provides clear proof of principle that PHPN
can detect relationships between two PTs known to be associated through a validated bio-
logical mechanism. PHPN successfully identified four common genes and six common
pathways between HDL and AD (Table 2). The common pathways identified by PHPN
that connect HDL and AD also support existing hypotheses about the lipid, inflammatory,
and amyloidmechanisms involved in AD pathogenesis [23-26]. It is important to note that
while PHPN used four common genes to detect the six common pathways between HDL
and AD, these pathways harbor numerous potential candidate genes that could be used
to further interrogate the genetic architecture of both AD and HDL. The promiscuous
nature of the gene to pathway assignment employed by PHPN ensures that the method is
robust to missingness of the genes mapped in the NHGRI catalogue.

Iron status biomarkers (IB) and cognitive performance (CP)

There has been substantial evidence that iron is essential for dendritic growth, synaptoge-
nesis, and myelination, and several studies indicate that early iron deficiency can lead to
life-long cognitive impairment [27-29]. Importantly, upon review of the related literature,
we were unable to find any single genes that were associated with both iron biomarkers
and cognitive performance. However, given the clinical relevance of iron levels to neu-
rocognitive function [30-32], we asked whether PHPN could illuminate any unknown

Table 2 Basis of inter-node edges betweenHDL and AD

Commongenes1 Commonpathways2

[348] APOE [2010] ABC transporters

[341] APOC1 [4520] Adheren’s junction

[5819] PVRL2 [5014] Amyotrophic lateral sclerosis (ALS)

[10452] TOMM4 [4514] Cell adhesion molecules (CAMs)

[4610] Complement and coagulation cascades

[5168] Herpes simplex infection
1Associated genes shared between HDL and AD, numbers in square brackets indicate the EntrezGene ID for each specified
gene.
2Biological pathways shared between HDL and AD, numbers in square brackets indicate Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathway identifiers.
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connections between IB and CP. PHPN, as predicted, did not identify any common asso-
ciated genes between IB and CP; but interestingly, the algorithm identified five enriched
biological pathways that were shared between the two traits (Figure 8, and Table 3). The
identification of enriched biological pathways shared between IB and CP, in the absence
of any common associated genes, indicates that the connection between these two traits
may be explained in part by genes located in the identified pathways that have yet to be
adequately interrogated by investigators. The discovery of these shared biological path-
ways underscores the strength of PHPN in identifying connections between two traits that
may not share any direct genic connections. This demonstrates that while PHPN utilizes
the information gained from GWAS studies to identify phenotypic connections, even in
the absence of explicit genic connections it is still able to identify important relationships
between PTs.

vonWillebrand factor and FVIII levels (vWF) and hippocampal atrophy (HA)

Two traits that were connected in the PHPN but did not share any common associ-
ated genes or any clear-cut biological relationship were vWF and HA. vWF promotes

Figure 8 Shared pathways. Kyoto Encyclopedia of Genes and Genomes (KEGG) defined Biological Pathways
shared between Iron Status Biomarkers and Cognitive Performance Phenotypes identified by PHPN. Note:
Numbers in brackets are KEGG pathway identifiers.



Darabos et al. BioDataMining 2014, 7:1 Page 13 of 18
http://www.biodatamining.org/content/7/1/1

Table 3 Kyoto Encyclopedia of Genes and Genomes (KEGG) defined biological pathways
shared between iron status biomarkers and cognitive performance phenotypes

Iron biomarker pathways1 Cognitive performance pathways2 Common pathways3

[4142] Lysosome [5143] African trypanosomiasis [1100] Metabolic pathways

[1100] Metabolic pathways [5034] Alcoholism [3060] Protein export

[4978] Mineral absorption [5010] Alzheimers disease [4066] HIF-1 signaling

[3060] Protein export [5146] Amoebiasis [4151] PI3K-Akt signaling

[4060] Cytokine-cytokine
receptor interaction

[5142] Chagas disease (American
trypanosomiasis)

[4080] Neuroactive
ligand-receptor
interaction

[531] Glycosaminoglycan
degradation

[4961] Endocrine and other
factor-regulated calcium
reabsorption

[4066] HIF-1 signaling [650] Butanoate metabolism

[4080] Neuroactive
ligand-receptor
interaction

[4020] Calcium signaling

[4151] PI3K-Akt signaling [5031] Amphetamine addiction

[4630] Jak-STAT signaling [4062] Chemokine signaling

[4120] Ubiquitin mediated
proteolysis

[280] Valine leucine and
isoleucine degradation

[4713] Circadian entrainment

[5030] Cocaine addiction

[4060] Cytokine-cytokine
receptor interaction

[4728] Dopaminergic synapse

[5014] Amyotrophic lateral
sclerosis (ALS)

[4144] Endocytosis

[5169] Epstein-Barr virus infection

[71] Fatty acid metabolism

[4510] Focal adhesion

[4727] GABAergic synapse

[4540] Gap junction

[4971] Gastric acid secretion

[4724] Glutamatergic synapse

[4912] GnRH signaling

[4066] HIF-1 signaling

[5016] Huntingtons disease

[562] Inositol phosphate
metabolism

[4730] Long-term depression

[4720] Long-term potentiation

[310] Lysine degradation

[4916] Melanogenesis

[1100] Metabolic pathways

[5032] Morphine addiction

[4080] Neuroactive
ligand-receptor
interaction

[5033] Nicotine addiction

[4330] Notch signaling

[670] One carbon pool by folate

[4151] PI3K-Akt signaling

[3320] PPAR signaling

[4972] Pancreatic secretion
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Table 3 Kyoto Encyclopedia of Genes and Genomes (KEGG) defined biological pathways
shared between iron statusbiomarkers and cognitive performance phenotypes (Continued)

[4146] Peroxisome

[4070] Phosphatidylinositol signaling
system

[640] Propanoate metabolism

[3060] Protein export

[4723] Retrograde endocannabinoid
signaling

[5323] Rheumatoid arthritis

[4970] Salivary secretion

[4726] Serotonergic synapse

[4721] Synaptic vesicle cycle

[5322] Systemic lupus erythematosus

[5202] Transcriptional misregulation
in cancer

[380] Tryptophan metabolism

[4725] Cholinergic synapse

[4270] Vascular smooth muscle
contraction

[4310] Wnt signaling

[410] beta-Alanine metabolism

Note: Numbers in square brackets “[ ]” represent KEGG database identifiers for indicated biological pathways.
1KEGG Pathways assigned to the Iron Status Biomarker Pathway.
2KEGG Pathways assigned to the Cognitive Performance Pathway.
3KEGG Pathways that are shared between the iron status biomarker and cognitive performance pathways.

platelet adhesion to subendothelial tissues at the site of vascular injury and is the carrier
protein for coagulation factor VIII (FVIII); FVIII acts as a co-factor in the coagulation
cascade accelerating the activation of factor X by factor IX [33,34]. Together, vWF and
FVIII levels are important hemostatic factors involved in the pathophysiology of vari-
ous blood [35,36] and cardiovascular [37,38] conditions. Additionally, circulating vWF is
used as a biomarker for inflammation [39]. Hippocampal atrophy (HA) is characterized
by decreased hippocampal volume. Because the hippocampus is the region of the brain
that is essential for memory formation, abnormalities in this region have been seen in var-
ious neurodegenerative disorders such as dementia and AD [40,41]. PHPN identified a
connection between vWF and HA with the unifying factor being a single shared pathway
(Table 4). Because the relationship between these two PTs was not expected, we exam-
ined possible biological connections between the two via literature review. Upon review,
we discovered a recently published study that interrogated inflammatory biomarkers for
association with hippocampal volume; it is important to note however that the biomark-
ers assessed in this study did not include vWF [42]. Further research revealed strong
associations between atrial fibrillation and both phenotypes; increased levels of vWF
associate with incidence of atrial fibrillation [43], and incidence of atrial fibrillation
associates with increased hippocampal atrophy [44,45] (Figure 9).
Through this analysis, PHPN exposed atrial fibrillation phenotype as a key connec-

tor between VWF and HA even though none of these three PTs share any common
genetic risk factors, as reported in the GWAS catalogue, but all three phenotypes shared
a common biological pathway (Table 4). Therefore, the PHPN was able to identify a pos-
sible, and plausible, indirect relationship between vWF and HA through the unifying,
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Table 4 Enriched biological pathways assigned to vWF, HA, and AF by PHPN

VonWillebrand factor/ Atrial fibrillation (AF) pathways1 Hippocampal atrophy (HA)1

factor VIII pathways1 pathways

[5412] Arrhythmogenic right
ventricular

[1100] Metabolic pathways [4360] Axon guidance

[4662] B cell receptor signaling
pathway

[670] One carbon pool by folate [4623] Cytosolic DNA-sensing
pathway

[4514] Cell adhesion
molecules (CAMs)

[531] Glycosaminoglycan
degradation

[4062] Chemokine signaling
pathway

[4142] Lysosome

[4664] Fc epsilon RI signaling
pathway

[1100] Metabolic pathways

[1100] Metabolic pathways [510] N-Glycan biosynthesis

[4666] Fc gamma R-mediated
phagocytosis

[4151] PI3K-Akt signaling
pathway

[4510] Focal adhesion [4141] Protein processing in
endoplasmic reticulum

[4670] Leukocyte trans
endothelial migration

[4530] Tight junction

[4650] Natural killer cell
mediated cytotoxicity

[4810] Regulation of actin
cytoskeleton

[4660] T cell receptor signaling
pathway

[4742] Taste transduction
1Pathways listed are identified enriched pathways for indicated phenotypes; numbers in square brackets indicate the Kyoto
Encyclopedia of Genes and Genomes (KEGG) identifiers for specified pathways.
2Common biological pathway is indicated in bold.

but independent, phenotype of atrial fibrillation Thus, PHPN provides a novel means
to identify inter-relationships between hemostatic, cardiovascular, and neurological con-
ditions that may otherwise have gone unnoticed. It is also interesting to note that the
single overlapping pathway between vWF and HA, the KEGG aggregate Metabolic Path-
way ([1100]), is an comprehensive pathway consisting of all the metabolic pathways

Figure 9 Diseases connection mechanism. Proposed Mechanism of indirect connection between von
Willebrand Factor/Factor VIII and Hippocampal Atrophy via Atrial fibrillation. Note: Underlying MRI image was
obtained and adapted from: http://www.healthjolt.com/features/heflin/alzheimers-disease/. Underlying
heart image was obtained and adapted from: http://caifl.com/arrhythmia-information/atrial-fibrillation/
copyright.

http://www.healthjolt.com/features/heflin/alzheimers-disease/
http://caifl.com/arrhythmia-information/atrial-fibrillation/
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contained in the KEGG database, comprising approximately 10% of the human genome
(≈ 2000 genes). Of the pathways interrogated by PHPN for this study 142 were linked
through this “umbrella” pathway. Further investigation of the overall network revealed
that of these 142 unique phenotypes, only three shared only the Metabolic pathway
in common; vWF, HA, and AF, although AF was located in a different module which
consisted mainly of cardiovascular diseases. The identification of plausible underlying
biology between two phenotypes who share only this pathway in common suggest that
PHPN displays a certain amount of robustness to ambiguous pathway definition by
KEGG.

Discussion
PHPN provides a means of integrating the accumulating wealth of genomic and pheno-
typic data and computationally identifies significant links between traits, attributes and
diseases. This model has tremendous potential as a clinical tool in identifying risk fac-
tors for certain diseases, or common drug targets. By constructing a network based on
pathways, we were able to associate phenotypes based on the shared biological processes
involving common genetic components and pleiotropic effects. Our network of human
traits based on ∼ 2, 300 genes, ∼ 1, 200 biological pathways and 800+ phenotypes
is more comprehensive than that of previous studies. We combine GWAS data, which
associates PT to genes, with the data from Reactome, which links genes to pathways.
We extract the backbone of the PHPN using the disparity filter, retaining the signif-
icant connection. Our statistical analysis of the network properties places the PHPN
in the scale-free family, showing once more how ubiquitous network structures with
heavy-tailed degree distributions really are in biological, social, and natural networks.
The automatic classification of phenotypes into “phenotype classes”, using the network’s
topological modularity and a standard community detection algorithm, showed very
promising results. Indeed, in contrast to what was achieved in previous studies and
manual classification, we are able to highlight modules with phenotypes with poten-
tially interesting shared biology, not by arbitrary disease types. Despite its apparent
simplicity, PHPN is an adaptable network algorithm that can elucidate both intuitive and
previously undiscovered biological connections between PTs, deftly characterizing the
shared genetic mechanisms in the former and identifying unifying genetic traits in the
latter. The ability to recognize biological connections, quantified by shared genes and
their associated biological pathways, between seemingly disparate phenotypes provides
researchers with a unique view of the pleiotropic biological environment that underlies
the human condition. Discovering additional, novel, connections between phenotypes
known to share certain biological traits provides additional information that could be
exploited in future hypothesis based studies. Recognizing the connections between dif-
ferent traits/phenotypes is an integral first step in understanding the dynamic, and highly
inter-related, genetic architecture underlying most complex disease; once these con-
nections are illuminated they may provide the necessary framework for the generation
of novel and innovative therapeutic interventions. For future work, we are interested
in integrating more datasets on gene interactions into our network, such as SNPs and
protein-protein interactions. Furthermore, we are currently working on three angles,
(1) comparing the HPN to the HDN, and other previous work on phenotype networks,
(2) running statistical significance tests, such as data set randomization, and finally (3)
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on refining our statistical methods, comparing algorithms for pruning our network and
identifying communities that may produce optimal results in extracting the significant
interactions in the PHPN.
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