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Abstract

Background: Multifactor Dimensionality Reduction (MDR) is a popular and successful data mining method
developed to characterize and detect nonlinear complex gene-gene interactions (epistasis) that are associated with
disease susceptibility. Because MDR uses a combinatorial search strategy to detect interaction, several filtration
techniques have been developed to remove genes (SNPs) that have no interactive effects prior to analysis.
However, the cutoff values implemented for these filtration methods are arbitrary, therefore different choices of
cutoff values will lead to different selections of genes (SNPs).

Methods: We suggest incorporating a global test of p-values to filtration procedures to identify the optimal
number of genes/SNPs for further MDR analysis and demonstrate this approach using a ReliefF filter technique. We
compare the performance of different global testing procedures in this context, including the Kolmogorov-Smirnov
test, the inverse chi-square test, the inverse normal test, the logit test, the Wilcoxon test and Tippett’s test.
Additionally we demonstrate the approach on a real data application with a candidate gene study of drug
response in Juvenile Idiopathic Arthritis.

Results: Extensive simulation of correlated p-values show that the inverse chi-square test is the most appropriate
approach to be incorporated with the screening approach to determine the optimal number of SNPs for the final
MDR analysis. The Kolmogorov-Smirnov test has high inflation of Type I errors when p-values are highly correlated
or when p-values peak near the center of histogram. Tippett’s test has very low power when the effect size of GxG
interactions is small.

Conclusions: The proposed global tests can serve as a screening approach prior to individual tests to prevent false
discovery. Strong power in small sample sizes and well controlled Type I error in absence of GxG interactions make
global tests highly recommended in epistasis studies.

Keywords: P-value, Global tests, ReliefF, Multifactor dimensionality reduction
Background
Recent advances in genotyping technology have allowed
for the rapid and easy interrogation of large numbers of
genetic variants for association with common, complex
disease. While there have been a number of successes in
association mapping studies, the associations found typic-
ally explain very little of the overall heritability of the traits
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being studied. There are several potential reasons for this
“missing heritability”, and one of those potential explana-
tions is epistatic interactions (gene-gene interactions). It is
hypothesized that such interactions play an important role
in the etiology of complex (non-Mendelian) traits, but
detecting such interactions presents a number of statistical
and computation challenges [1]. In response to these chal-
lenges, a number of new data-mining approaches have
been developed [2].
Multifactor Dimensionality Reduction (MDR) is a popu-

lar and highly successful statistical method developed to
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detect and characterize nonlinear complex gene-gene or
gene-environment interactions (epistasis) that could be
associated with disease susceptibility. The method was first
proposed by Ritchie et al. [3] to detect estrogen-metabolism
gene interactions associated with sporadic breast cancer.
MDR has several advantages over more traditional statistical
approaches such as logistic regression modeling: 1) MDR is
a non-parametric approach with no requirement to the dis-
tribution of data. 2) MDR can analyze non-linear associa-
tions in genotypic combinations. 3) MDR has improved
power to detect gene-gene interaction in small to moderate
sample sizes. Since the introduction of the original MDR
implementation, many works have been published to im-
prove modeling and prediction accuracy with the MDR
method. For more information on the history and develop-
ment of the method, please refer to the comprehensive re-
view of the MDR and its extended methods by Moore [4].
While the MDR approach is widely used, to make

this paper self-contained, we give a brief description
of the method. MDR is often applied to genotypic
data to detect gene-gene (GxG) interactions among
single nucleotide polymorphism (SNP) and the ori-
ginal implementation of this method can be extended
to detect the interactions in other types of data when
the explanatory variables are categorical variables and
the outcome variable is binary. As the scale of associ-
ation studies has expanded (with larger numbers of
SNPs), a filtration step is often implemented in the
first step of MDR analysis to remove noisy SNPs. In
this step, a subset of genes that are unlikely to inter-
act with others is removed by filtration methods such
as SURF [5], TuRF [6] etc. ReliefF [7], has become a
commonly applied filter, and we will focus on this fil-
ter in the current study. After this step, the remaining
SNPs are used for the dimensionality reduction and
model selection steps of the MDR algorithm. In this
step, all variable combinations are considered for k-
way (k = 2, 3, 4 . . .) interactions. For each multi-locus
combination, the ratio of cases to controls within each
contingency table cell is calculated, and then each cell
is assigned a status of high-risk or low-risk by com-
paring this ratio to the ratio of cases: controls in the
overall dataset. Cells with a ratio greater than the overall
ratio are assigned “high-risk” status, and those with a ratio
lower than the overall ratio are assigned “low-risk” status.
Subsequently, a balanced classification accuracy is calcu-
lated for each multi-locus combination, and the optimal
model is selected based on the highest balanced accuracy.
This model selection approach is performed in concert with
a cross-validation procedure, usually 10-fold, which ran-
domly divides the whole data set into a training set and a
validation set. The testing accuracy is the balanced accuracy
when the classification rule developed from the training
data set is applied to the testing data set. The cross
validation count (CVC) summarizes the number of times a
model is the top model in each of the cross-validation splits
of the data. The optimal k-way (k=2, 3, 4 . . .) interaction
model with the highest training accuracy and the highest
CVC is then selected as the winner model. Finally, the sig-
nificance of the selected optimal model is assessed by per-
mutation testing (comparing the testing/prediction
accuracy against the empirical distribution built by at least
1000 permutations). MDR can be performed by an open
source software mdr2.0 and model goodness-of-fit and sig-
nificance can be assessed using software mdrpt1.0 [8] or in
the MDR.R R software package [9].
In this work, we seek to address two existing issues in the

current MDR analysis. First, current filtration approaches
do not evaluate the significance of the SNPs considered (or
provide p-value for their measures) and there is no clear
guideline for the cutoff point of such filtration measures.
This leads inconsistency in the optimal number of SNPs
remaining for the final MDR analysis.
Second, as there is a growing appreciation that the eti-

ology of human diseases is extremely complex, many inves-
tigators are using MDR to evaluate many potential
interactive effects, and not just a single final best model
[10]. In this type of approach, not one but numerous tests
can be performed in search of an optimal model in the k-
way interaction, as the number of partitions for k-way inter-

action over m loci is
m
k

� �
¼ m!

k! m�kð Þ! . For instance, if an

investigator is interested to detect significant 2-way
interactions among 50 SNPs, 1225 tests will be performed
which will inflate the family-wise Type I error rate

to 1� 1� αð Þ
m
k

� �
¼ 1� 1� 0:05ð Þ1225 � 1, where

α ¼ 0:05 is the nominal error rate for an individual test
without proper control.

False discoveries and losing power to detect the signal
after the multiplicity adjustment are two concurrent issues
in analyzing high dimensional data. Instead of replacing all
the existing methods to control the false discovery, we
propose to add the global tests to the current MDR frame-
work as an ad-hoc screening process to prevent false dis-
coveries. We will explain the rationale and utility of global
tests in Section Global tests.

Incorporating global tests within the filtration proce-
dures can reveal a trend of gene interactive patterns
when noisy genes (SNPs) are removed step by step using
ReliefF or other filtration techniques. In the current
study, we demonstrate this approach in a candidate gene
study of drug response in Juvenile Idiopathic Arthritis,
using the ReleifF filter. Additionally, we perform a simu-
lation study comparing several different global testing
approaches for a range of genetic etiologies to compare
the power of different approaches.
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Methods
Global tests
The idea of global testing is to assess the patterns of
p-values from multiple testing of k way interactions among

m loci (n ¼ m
k

� �
¼ m!

k! m�kð Þ!tests). Under the null hypoth-

esis of no GxG interactions, the p-values will follow uni-
form (0, 1). To see this, let T be the test statistic with the
cumulative distribution function (CDF) F0(t) and the inverse
CDF F�1

0 tð Þ for t 2 R under H0. Let P be the p-value
corresponding to the test statistic T. Under H0, we have
Pr P ≤ pð Þ ¼ Pr F�1

0 Pð Þ ≤ F�1
0 pð Þ� � ¼ F0 F�1

0 pð Þ� � ¼ p for
p 2 0;1ð Þ (Pattern 1 in Figure 1).
When a proportion of m loci have k-way interactions

(Hα), it is expected to observe the p-values shifting towards 0.
To see this, let F(t) be the CDF under Hα and F tð Þ >
F0 tð Þ for t 2 R, then Pr P≤pð Þ ¼ Pr F�1

0 Pð Þ� �
≤F�1

0 pð ÞÞ ¼
F F�1

0 pð Þ� �
> p for p 2 0;1ð Þ (Pattern 2 in Figure 1). Due

to correlations/linkage disequilibrium among SNPs and the
redundancy of SNPs in high order models, sometimes p-
values shift toward 1, i.e. Pr P≤pð Þ < p for p 2 0;1ð Þ
(Pattern 3 in Figure 1). When p-values are correlated, they
might peak near center of histogram (Pattern 4 in Figure 1).
Patterns 3 and 4 are deviated from uniformity but they do
not indicate potential k-way interactions among m loci.
Pattern 1− Uniform(0,1) (no GxG)
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Figure 1 Four patterns of p-values.
The rationale of global testing is to ensure p-values are
not randomly and uniformly distributed (Pattern 1) before
we investigate each single p-value. Correlated p-values
without significant effects (H0) might even shift toward 1
or peak near the center (Patterns 3 and 4). The goals are
to rule out Patterns 1, 3 and 4 and only move forward to
the final MDR analysis when p-values are in Pattern 2.
If the entire set of p-value follows a uniform distribu-

tion, then it is very likely for a small p-value to be a false
discovery by chance. As shown in Figure 1, the entire set
of p-values might have four different Patterns: uniform,
shifting to 0, shifting to 1 or peak near the center. In all
four cases, we notice that the minimum p-values are less
than 0.05 (0.0001111 in Pattern 1, 2.65e-6 in Pattern 2,
0.00617 in Pattern 3 and 0.003734 in Pattern 4). If we
take the distribution of the entire set of p-values into ac-
count, then the minimum p-values in Patterns 1, 3 and 4
are false discoveries by chance.
Combined global testing and filtration technique
A global test will serve as an ad-hoc diagnostic tool to exam
all p-values from k-way interactions among m genes in
MDR-analysis. These p-values come from empirical distri-
butions generated through permutation testing. Let
P ¼ pi i ¼ 1;2;⋯;nð Þ be identical and independently
Pattern 2 − shift to 0 (GxG)
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distributed (i.i.d.) p-values from the MDR analysis of k–way

interactions among m–loci (n ¼ m
k

� �
¼ m!

k! m�kð Þ!). We will

consider a one-sided test to compare

H0 : PeUniform 0; 1ð Þ
versus
Ha : Pr P ≤ pð Þ > p for p 2 0; 1ð Þ

8<: ð1Þ

Rejecting H0 indicates significant GxG interactions in
some target genes.
We propose incorporating global testing of p-values with

ReliefF [7] gene filtration technique to detect the patterns
of k-way GxG interaction among m genes (SNPs) and re-
move noisy genes (SNPs) with little interactive effects to
determine the optimal number of SNPs for the final MDR
analysis. The ReliefF algorithm estimates weights to meas-
ure the potential accuracy of attributes in prediction of
phenotype. The redundant attribute will be assigned a
lower score. When applied in gene-gene interactions, a
higher ReliefF score indicates a stronger interactive effect
for the corresponding gene (SNP). ReliefF algorithm first
uses x- nearest neighborhood approach x ¼ 1;2;⋯;mð Þ to
match a selected subject with x subjects in neighborhood
(with shortest distances across all SNPs) from the control
group and from test group respectively. An attribute (SNP)
will be assigned score 1 (−1) if the attribute from the
selected subject matches (mismatches) one of x nearest
subjects from the same phenotype group. Similarly, an at-
tribute will be assigned score −1 (1) if the attribute from
the selected subject matches (mismatches) one of the near-
est subjects from the different phenotype group. The score
will be aggregated for all subjects and normalized (divided)
by the total number of subjects and neighbors. Detailed de-
scription of ReliefF algorithm for filtering genotyping data
can be found in Section 3 of [4].
The flow chart of the testing procedure is presented in

Figure 2. Starting with a set of m candidate SNPs, per-
form the ReliefF algorithm on m SNPs and sort SNPs by
ReliefF scores in an ascending order. Generate p-values
for the exhaustive search of k-way interactions among a
total of m SNPs using the original or extended MDR
methods. For each k-way interaction, one p-value of MDR
analysis is generated by permutation test. Let m1 be the
number of remaining SNPs. Perform the global testing on
m1

k

� �
p-values. Remove one SNP that has the lowest

ReliefF score and all interactions corresponding to this
SNP. Perform the global testing about hypothesis testing
(1) on the p-values of the k-way interactions of the
remaining SNPs. Continue to remove SNPs with the lowest
ReliefF score one by one and perform global testing after
each removal of a SNP. One can stop the process when the
remaining SNPs reach a predetermined minimum number.
Choose the optimal number of SNPs for the final MDR
analysis as the largest number of SNPs with global testing
p-value< α. Often we set α ¼ 0:05. To be more rigorous
of controlling family-wise Type I error, one can apply FDR
algorithm on the global testing p-values and the first p-
value with FDR< 0.05 will determine the optimal number
of SNPs.

Global tests of P-values
Here we introduce 6 global tests that can be applied to
test hypothesis (1). These six tests are based on different
approaches to detect deviation from uniformity. We will
survey these methods and compare their power using a
case study and Monte-Carlo simulations.

Test 1 one sided Kolmogorov-Smirnov test [KS]
KS test is a non-parametric test that can be applied
to compare the distance between an empirical distribu-
tion of i.i.d. p-values and Uniform(0, 1). For hypoth-
esis test (1), define the one-sided KS statistic as

Dþ
n ¼ supp

1
n

P
i¼1

n
I pi≤pf g � p

 !
, where I pi≤pf g is an indicator

function which equals 1 if pi≤pand 0 if pi > p . According
to [11], the p-value of one-sided KS test follows

n 1� tð Þ½ � is the largest integer not greater than n 1� tð Þ
and t 2 0;1ð Þ.

Test 2 one-sided inverse chi-square test [inverse chi]

Test 3 one sided inverse normal test [inverse norm]
Transform p-value to normal z score by letting
zi ¼ Φ�1 pið Þ where Φ�1 is inverse cumulative normal

distribution. Under H0, Z ¼ P
i¼1

n
zi

 !
=
ffiffiffi
n

p e N 0;1ð Þ . For

one sided test (1), reject H0 if Z<Zα where Zα is
α � 100% percentile of the standard normal distribution.

Test 4 one sided logit test [logit]

Logit transform p-value by letting L ¼P
i¼1

n
ln pi= 1� pið Þð Þ.

[13] shows that under H0, the distribution of L can be

Fisher [12] shows that if pi
i:i:d:e Uniform 0; 1ð Þ for

i ¼ 1;2;⋯;n , then �2
P
i¼1

n
ln pið Þ e χ22n where χ22n is chi-

square distribution with 2n degrees of freedom. For a one

sided test (1), reject H0 if �2
P
i¼1

n
ln pið Þ > χ22n;1�α where

χ22n;1�α is 1� αð Þ � 100% percentile of χ22n.

Pr Dþ
n > t

� � ¼ t
P
i¼0

n 1�tð Þ½ � n
i

� �
1�t�i=nð Þn�i tþi=nð Þi�1 where



Start with a total of SNPs.

Perform the ReliefF algorithm on 
SNPs. Sort SNPs by ReliefF scores in 
an ascending order. 

Let be the number of remaining 
SNPs. At the beginning, = .

Perform the global test on p-values 

regarding all -way interactions among 
remaining SNPs. 

Test
: ~ (0,1) vs.
: Pr( ) > for (0,1).

If the global test fails to reject , then
remove one SNP with the lowest 
ReliefF score;
let = 1;
let = .

If the global test rejects , then
p-values shift towards 0 (Pattern 
2 in Figure 1).
the optimal number of SNPs for 
the final MDR analysis is .

Perform the final MDR analysis 
on the remaining SNPs. 

Generate p-values for the exhaustive 
search of -way interactions among a 
total of SNPs using the original or 
extended MDR methods.    

Figure 2 Flow chart of global testing of p-values in conjunction with filtration process.
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closely approximated by Student’s t-distribution with 5nþ 4

degrees of freedom, namely L� ¼ L
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3 5nþ4ð Þ

π2n 5nþ2ð Þ
q

� t5nþ4 .

Therefore, for one-sided test (1), we can reject H0

if L� < t5nþ4;αwhere t5nþ4;α is α � 100% percentile of the
t-distribution.
Test 5 one sided Wilcoxon test [Wilcoxon]
Order n p-values from MDR testing along with n2 obser-
vations randomly drawn from Uniform(0,1) from least
to greatest and denote them by S1;S2;⋯;SN with
N ¼ nþ n2. Let W be the sum of the ranks corresponding
to n p-values from MDR testing. For one-sided test (1), we
can reject H0 if W≤n N þ 1ð Þ � ωαwhere the constant ωα

is chosen to make the Type I error probability equal α.
Values of ωα are given in Table A6 by [14]. For large
sample sizes, i.e. min(n,n2) going to infinity, one can apply
normal approximation on the standardizedW.
Test 6 Tippett and Wilkinson’s test [Tippett]
Tippett’s Test [15] is based on the property of the min-
imal p-value in multiple testing. Let p 1ð Þ;p 2ð Þ;⋯;p nð Þ be
the ordered p-values in an ascending order. When
p-values identically and independently follow Uniform
(0,1) distribution, Tippett’s test will reject H0 if

p 1ð Þ < 1� 1� αð Þ1=n. The p-value of Tippett’s test equals
1� 1� p 1ð Þ

� �n
. Tippett’s test is very easy to perform but

it only takes the smallest p-value into account.
Wilkinson [16] extended Tippett’s procedure to the rth

smallest p-values where r ¼ 1;2;⋯;n. By expanding
αþ 1� αð Þð Þn , Wilkinson tabulated the probability,



Table 1 List of 25 SNPs from 17 candidate genes in the
folate pathway

SNP RS # MAF*

ABCG2 C> T rs7699188 0.13

ABCG2 15846 A>C no rs [35] 0.01

ABCG2 G> A rs35252139 0.13

ABCG2 A>G rs35229708 0.13

ABCG2 C> T 55930652 0.27
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denoted by Cγ,α of obtaining r significant statistics by
chance in a group of n tests. Suppose there are r tests
with p-values less than α, Wilkinson’s test rejects H0 if
cr;α < α [17]. Because P(r) has been distributed with para-
meters r and n-r + 1, tables of the incomplete beta func-
tion can be used to obtain critical values of P(r) directly.
In our work, we will not include Wilkinson’s test in case
study and power simulation because this method does
not provide p-value for the testing results.
ATIC C> T rs12995526 0.3

BHMT A>G rs3733890 0.33

DHFR A>T rs7387 0.3

GGH C> T rs3758149 0.27

MTHFD2 indel rs71391718 0.31

MTHFR C> T rs1801133 0.3

MTHFR A>C rs1801131 0.33

MTHFR G> A rs2274976 0.06

MTR A>G rs1805087 0.19

MTRR A>G rs1801394 0.57

SHMT1 C> T rs1979277 0.37

TYMS *2/*3 rs34743033 0.49

TYMS indel rs11280056 0.32

FOLH1 C> T rs61886492 0.03

GART A>G rs8788 0.21

GART A>G rs8971 0.19

SLC25A32 G> A rs17803441 0.07

ADORA2a C> T rs2298383 0.61

ITPA T>C rs2295553 0.52

SLCO1B1 T>C rs4149056 0.12
*Minor Allele Frequency.
Case study
We used a real dataset to illustrate how to apply our pro-
posed global testing to prevent false discovery and to deter-
mine the optimal number of SNPs for the final MDR
analysis. Juvenile Idiopathic Arthritis (JIA) is one of the
most common chronic diseases of childhood, affecting an
estimated 300,000 children in the U.S. alone, and is an im-
portant cause of morbidity and disability in children [18].
Although methotrexate (MTX) is the most commonly used
second-line agent used to treat JIA worldwide, this antifo-
late drug has shown considerable inter-individual variability
in clinical response and adverse reactions [19]. The polyglu-
tamation of methotrexate (MTXglu) is an intracellular
mechanism that retains the drug and enhances target en-
zyme inhibition within the folate pathway [20], and high
concentrations of “long chain”methotrexate polyglutamates
(MTXglu3-5) have been associated with improved response
to the drug in adults with rheumatoid arthritis [21]. Studies
have reported the extensive variability in intracellular
MTXglu concentrations in JIA, and an association of long
chain MTXglu with toxicity (but not efficacy) in children
[22]. Due to the complexity of the folate cycle as well as the
extensive variability in response to the drug in clinical prac-
tice, it is hypothesized that genetic factors may contribute
to differences seen in distinct patterns of MTXglu concen-
trations intracellularly, which might further impact patients’
responses to MTX.
In this case study, we analyzed 25 SNPs from 17 can-

didate genes in the folate pathway (Table 1). MTXglu
was measured in all patients after at least 3 months on
stable MTX therapy and a range of 1 to 5 glutamate moi-
eties were reported as a percentage of the total polygluta-
mate concentration (MTXglun%). Hierarchical clustering
was performed to identify patterns of MTXglun%

, and two
clusters were determined based on the hierarchical cluster-
ing of normalized MTXglu1-5%. Subjects in cluster 1 had
lower concentration of short chain polyglutamates
(MTXglu1-2%) and higher concentration of long chain
polyglutamates (MTXglu3-5%) as compared to subjects in
cluster 2 (p< 0.05). These clusters reflected distinct
patterns in the proportion of MTXglu concentrations.
There were 30 subjects in Cluster 1 and 74 subjects in

Cluster 2. The MTXglu clustering phenotype was coded 1
and 0 for MDR analysis. Genotypes, coded 0 for common
homozygote, 1 for heterozygote and 2 for rare homozygote
for 25 SNPs, were measured. The overall goal of the ana-
lysis was to assess whether interactions among SNPs are
associated with MTXglu clustering. While the scale of this
study is not so large that an exhaustive search of all SNPs
is computationally limited, this data is used to demonstrate
the proposed approach.
For illustrative purposes, we will focus on 2-way inter-

actions among 25 SNPs and will determine the optimal
number of targeted SNPs for testing 2-way interactions.
We first applied the ReliefF algorithm to 25 SNPs. As
shown in Table 2, ReliefF scores ranged from −0.0308 to
0.1163. Although a higher score indicates stronger inter-
action with other SNPs, there is no clear cutoff point for
ReliefF scores.
To circumvent this limitation, we incorporated global

testing of p-values and ReliefF algorithm using the
method proposed in Section Combined global testing
and filtration technique. We first generated p-values for



Table 2 FDR adjusted P-value in global testing

# SNPs Remaining SNP ReliefF P-values of global testing

Removed SNP (GxG) Removed Score KS Inverse chi Inversenorm Logit Wilcoxon Tippett

0 25(300) 0.29121 0.22008 1.00000 1.00000 0.80991 0.33927

1 24(276) rs35252139 −0.0308 0.21644 0.12424 1.00000 1.00000 0.55397 0.33340

2 23(253) rs35229708 −0.0308 0.16697 0.06603 1.00000 1.00000 0.43198 0.32718

3 22(231) rs2298383 −0.0279 0.13417 0.03087 1.00000 1.00000 0.25182 0.32062

4 21(210) rs12995526 −0.0250 0.16987 0.05667 1.00000 1.00000 0.45717 0.31374

5 20(190) rs7699188 −0.0202 0.11033 0.01793 1.00000 1.00000 0.31680 0.30658

6 19(171) rs1805087 −0.0183 0.03887 0.00320 1.00000 1.00000 0.18665 0.29916

7 18(153) rs4149056 −0.0067 0.02048 0.00106 1.00000 1.00000 0.09019 0.29154

8 17(136) 55930652 −0.0038 0.01051 0.00080 1.00000 1.00000 0.10254 0.28376

9 16(120) * no rs [35] −0.0029 0.00455 0.00016 1.00000 1.00000 0.02642 0.27592

10 15(105) rs17803441 0.0010 0.00312 0.00011 1.00000 1.00000 0.00567 0.26811

11 14(91) rs34743033 0.0087 0.00022 0.00001 1.00000 1.00000 0.00015 0.26049

12 13(78) rs61886492 0.0096 0.00022 0.00000 0.00001 0.00000 0.00006 0.25328

13 12(66) rs71391718 0.0183 0.00008 0.00000 0.00000 0.00000 0.00001 0.25328

14 11(55) rs3758149 0.0192 0.00008 0.00000 0.00000 0.00000 0.00006 0.25328

15 10(45) rs1801131 0.0240 0.00026 0.00004 0.00004 0.00004 0.00016 0.25328

16 9(36) rs1801394 0.0365 0.00022 0.00004 0.00003 0.00003 0.00015 0.25328

17 8(28) rs8788 0.0375 0.00008 0.00003 0.00002 0.00002 0.00015 0.25328

18 7(21) rs7387 0.0452 0.01051 0.00255 0.00547 0.00442 0.00799 0.25328

19 6(15) rs1801133 0.0481 0.05212 0.06679 0.10791 0.12185 0.05337 0.25328

20 5(10) rs8971 0.0481

21 4(6) rs2274976 0.0644

22 3(3) rs1979277 0.0673

23 2(1) rs11280056 0.0702

24 rs3733890 0.0750

25 rs3733890 0.1163

Optimal number of SNPs removed 5 4 11 11 8 Not Found
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all 2-way interactions among 25 SNPs through per-
mutation testing. Then we applied global testing, in-
cluding KS test, Inverse chi test, Inverse norm test,
Logit test, Wilcoxon test and Tippett’s tests on
25
2

� �
¼ 300 p-values of 2-way interactions among 25

SNPs. The global tests were performed to evaluate whether
the distribution of p-values deviated from uniformity (null
hypothesis) and shifted towards 0 (alternative hypothesis -
Pattern 2 in Figure 1). Then we removed one SNP with the
lowest ReliefF score step by step and repeated the global
testing process until only 5 SNPs were remained. We
stopped the global testing procedure at 5 SNPs because it is
not meaningful or necessary to perform global testing when
the number of SNPs is less than 5 in any case study.
The entire procedure of filtration and global testing of

p-values are summarized in Table 2. The optimal number
of SNPs is the largest number of SNPs with global testing
p-value <0.05. In this case study, KS test and Inverse chi
test were more sensitive to deviation from uniformity as
the tests became significant after 5 and 4 SNPs removed
respectively (Table 2). Inverse norm test and Logit test were
more conservative, suggesting removal of 11 SNPs. Wilcoxon
test, removing 8 SNPs, was moderate as compared to the
other tests. Tippett’s test failed to detect significant GxG
interactions with all FDR corrected p-values> 0.05. Our fur-
ther simulation studies (discussed in Section Power simula-
tion) indicate that Tippett’s test, which only takes the
smallest p-value into account, might not be appropriate for
global testing of p-values.
Figure 3 and 4 both revealed strong patterns of transi-

tion when noisy SNPs were removed. In Figure 3, as
SNPs with low ReliefF scores were removed sequentially,
the histogram of p-values started to shift toward 0. Also
in Figure 4, the global test p-values were in decreasing
trends when noisy SNPs were removed one by one.
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Once the p-value of global testing was under 0.05, it
continued to stay under 0.05. There were only a few
exceptions at the end of the filtration procedure, prob-
ably due to smaller sample sizes and reduction of power.
After the filtration and global testing, we removed 4 SNPs

as suggested by Inverse chi test with FDR correction
(Table 2) and performed MDR analysis on the remaining 21
SNPs. The results of MDR analysis indicated that there was
significant two-way interaction between DHFR (rs7387) and
ITPA (rs2295553) with testing balance accuracy=0.7374
(p=0.0045). The MDR analysis was performed by an open
source software mdr2.0 and model goodness-of-fit and sig-
nificance was assessed by permutation using software
mdrpt1.0 [8].
The dihydrofolate reductase (DHFR) enzyme is a well

known important target of MTX action. When DHFR is
inhibited by MTX the subsequent production of reduced
folates such as tetrahydrofolate (THF) 5,10 methenyl-THF
and 5-methyl-THF are altered, affecting not only total cel-
lular folate concentrations but also the downstream effects
from one carbon donation including homocysteine
remethylation and pyrimidine and purine synthesis
thought to result in an anti-proliferative effect [23]. The in-
hibition of DHFR also results in a buildup of the precursor
dihydrofolate (DHF) which in its polyglutamated state has
inhibitory effects upon enzymes within the pathway as well
[24]. Inosine triphosphate pyrophosphatase (ITPA) plays a
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Figure 3 Histograms of p-values from multiple tests GxG interactions
removed step by step. The red dash curves are fitted beta density functio
role in de novo purine synthesis, and is closely related to
adenosine metabolism, which is thought to contribute to
MTX response via its anti-inflammatory effect [25]. Varia-
tions in ITPA interestingly have been shown by other
authors to contribute to MTX response as part of a candi-
date gene study in JIA [26], as well as “predisposing genetic
attribute” in studies utilizing MDR in adults with rheuma-
toid arthritis [27,28]. How these 2 genes directly affect
MTXglu patterns remains difficult to determine, as the dir-
ect understanding of how MTXglu patterns are associated
with response is yet to be elucidated. However, both genes
encode enzymes closely linked to or directly affected by
MTX, thus as we gain a more detailed knowledge of cellu-
lar folate metabolism and its disruption by anti-folate
agents such as MTX, we will then develop a better under-
standing of this complex system, and how alterations in
the folate pathway affect response to the drug.

Power simulation
In the two empirical studies described below, we investi-
gate the performance of 6 global testing when p-values ex-
hibit different patterns (Figure 1) of variation. Data were
generated from the Uniform distribution or varying mix-
tures of Beta distributions based on the inference regarding
the patterns of p-values as described in Section Global tests
and Figure 1. Here we give the rationale of using uniform
or beta mixture to simulate p-values under null and
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ns).
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Figure 4 Global Testing of p-values combined with filtration technique (The red line is at nominal rate 0.05. The optimal number of
genes is determined when the global test first has p-value< 0.05).
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Figure 5 Gene to gene interaction detected by MDR after filtering out 6 SNPs according to the one sided inverse chi-square test.
(The distribution of MTXglu clustering among genotypic combinations between DHFR-rs7387 and ITPA-rs2295553 is listed. The genotype for
DHFR-rs7387 and ITPA-rs2295553 is coded as 0-homozygote, 1-heterozygote and 2-rare homozygote. In each cell, the first column stands for the
number of subjects in cluster 1 (low concentration of MTXglu1-2% and high concentration of MTXglu3-4%) and the second column stands for the
number of subjects in cluster 2(high concentration of MTXglu1-2% and low concentration of MTXglu3-5%. Genotypic combinations in relatively
high (low) likelihood of cluster 1 are displayed in darkly (lightly) shaded cells).
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alternative hypotheses. Under the null hypothesis of no
GxG interactions, we have proved that p-values follow
Uniform(0,1) distribution (Pattern 1). When this null hy-
pothesis is violated, we introduce a latent variable to indi-
cate the status of underlying hypothesis for each test. For
pi; i ¼ 1;2;⋯;n , introduce a latent variable Zi where for
hypothesis testing (1), we have

Zi ¼ 0 if H0 : noGxG for the ith test Pattern1;Pr P≤pð Þ ¼ pð Þ
Zi ¼ 1 if Ha : GxG for the ith test Pattern2;Pr P≤pð Þ > pð Þ;

�
ð2Þ

for p 2 0;1ð Þ . The proportion of tests where Hα holds is
denoted by the mixing weight Pr Zi ¼ 1ð Þ ¼ π where
π 2 0;1ð Þ.
Conditioning on Zi, we have

pijZi ¼ 0eUniform 0; 1ð Þ
pijZi ¼ 1eBeta a; bð Þwherea > 0andb > 0; a;bð Þ 6¼ 1;1ð Þ:

�
ð3Þ

The marginal distribution of combined p-values becomes
Pe 1� πð ÞUniform 0; 1ð Þ þ πBeta a;bð Þ , which indicates
that with 1� πð Þ � 100% of chance, a p-value is drawn
from Uniform(0,1) and with π � 100% of chance, a p-value
is drawn from Beta(α,b). Beta distribution is very flexible to
characterize the patterns of p-values (Figure 1) where
Uniform (0,1) is a special case of Beta (1,1). One can also
adjust the shape and scale parameters a and b to model the
deviation from uniformity.
The p-values from MDR analysis are correlated due to

linkage disequilibrium among SNPs and sharing the SNPs
among GxG interactions. The dependence among p-values
might cause inflation of Type I errors or lead to bias in glo-
bal tests. As a result, it is critical to extensively simulate
p-values with varying correlation structures and assess the
robustness of global tests for correlated p-values. In this
work, we simulated correlated Uniform variables with random
correlation matrix Σ and Beta random variables with correl-
ation coefficient ρ ¼ 0:2;0:8;Beta 2;5ð Þ;Uniform 0:1 ;0:9ð Þ
respectively. The details of generating correlated uniform [29]
and beta distributions [30] are summarized in Appendix 1.
The first simulation study concerns the Type I error of

global testing when there does not exist any GxG interac-
tions among genes (SNPs). We generated p-values from

� Independent Uniform(0,1),
� Correlated Uniform 0;1ð Þ,
� Correlated 0:9Uniform 0;1ð Þ þ 0:1Beta 5;1ð Þ, (4.1)
� Correlated 0:5Uniform 0;1ð Þ þ 0:5Beta 5;1ð Þ, (4.2)
� Correlated 0:9Uniform 0;1ð Þ þ 0:1Beta 6;3ð Þ, (4.3)
� Correlated 0:5Uniform 0;1ð Þ þ 0:5Beta 6;3ð Þ. (4.4)

These six scenarios cover Patterns 1, 3 and 4 with no
signs of GxG interactions in Figure 1. For each simulation,
the sample size of p-values varies from 20 to 500 and we
performed global tests on each sample of p-values. We
repeated the process 1000 times, and calculate the percent-
age of rejection of null hypothesis for each test. Under the
hypothesis of no GxG interaction, this rejection rate is con-
sidered as Type I error. As shown in Table 3, the Type I
error rates are well controlled to be near or under the nom-
inal rate 0.05 when p-values are i.i.d Uniform(0,1). When
p-values are correlated Uniform with random correlation
matrices, there was slight inflation in five global tests except
Tippett’s test. It is good to notice that the inflation is not se-
vere as most tests have Type I error rates under 0.07. Such
mild inflation is acceptable in screening testing and we will
discuss how to further address this issue in Discussion
Section.
In addition to Uniform distributions, we also simulated

correlated Beta mixtures in formula (4.1)-(4.4) regarding
p-values shifting to 1 or peaking near the center (Patterns 3
and 4). We conservatively set correlation coefficient
ρ ¼ 0:8 (Table 3) to simulate very strong correlation among
Beta variates, which is most likely to inflate Type I errors in
global tests. The simulation results for mild correlation in-
cluding ρ ¼ 0:2;Beta 2;5ð Þ;Uniform 0:1; 0:9ð Þare summar-
ized in Appendix 1 (Table 4). The results from Table 3 and
Appendix 1 (Table 4) show that Inverse chi test and
Tippett’s test are very robust to dependency in p-values
with well controlled Type I error rates. The KS test has the
highest inflation in several scenarios we simulated, espe-
cially when correlated p-values had peaks near center (Pat-
tern 4). For strongly correlated p-values (ρ ¼ 0:8 Table 3),
the inverse norm, the Wilcoxon and Logit tests also had
modest inflations when sample sizes get larger (n> 200).
When p-values were moderately correlated ( ρ ¼ 0:2;
Beta 2;5ð Þ;Uniform 0:1; 0:9ð Þ, (Table 4)), the inverse norm,
the Wilcoxon and the Logit tests had well controlled Type
I errors for all tested sample sizes.
In the second simulation study, we are interested in the

power of each of the approaches to detect the GxG interac-
tions by performing the hypothesis testing (1) to detect
Pr P≤pð Þ > p(Pattern 2 with GxG interactions). We simu-
lated p-values from a wide range of beta mixture distribu-
tion where the mixing π was set to be 0.1 and 0.4,
indicating different proportions of tests with significant
GxG interactions. In most cases, parameters a < b will
have Pr P≤pð Þ > p for p 2 0;1ð Þ which coincides with
Pattern 2. Under alternative hypothesis of a proportion of
tests having GxG interaction, we simulated p-values from
6 Beta mixtures:

� Correlated 0:9Uniform 0; 1ð Þ þ 0:1Beta 0:4; 6ð Þ,
� Correlated 0:6Uniform 0; 1ð Þ þ 0:4Beta 0:4;6ð Þ,
� Correlated 0:9Uniform 0; 1ð Þ þ 0:1Beta 0:5;4:5ð Þ,
� Correlated 0:6Uniform 0; 1ð Þ þ 0:4Beta 0:5;4:5ð Þ,
� Correlated 0:9Uniform 0; 1ð Þ þ 0:1Beta 1; 5ð Þ, and
� Correlated 0:6Uniform 0; 1ð Þ þ 0:4Beta 1; 5ð Þ.



Table 3 Type I error of six global tests of p-values when
p-values are independent or strongly correlated (The
nominal Type I error rate is 0.05 and the severe inflation
of Type I error with simulated error rate> 0.1 is written
in bold italic)

Independent Uniform (0,1)

n KS Inverse chi Inverse norm Tippett Wilcoxon Logit

20 0.052 0.053 0.049 0.051 0.052 0.050

50 0.051 0.052 0.051 0.048 0.051 0.050

100 0.046 0.049 0.050 0.049 0.049 0.051

200 0.047 0.048 0.047 0.052 0.049 0.048

300 0.051 0.054 0.053 0.051 0.053 0.053

400 0.042 0.046 0.046 0.048 0.047 0.046

500 0.051 0.050 0.049 0.051 0.050 0.050

Correlated Uniform (0,1)

n KS Inverse chi Inverse norm Tippett Wilcoxon Logit

20 0.061 0.059 0.063 0.050 0.065 0.062

50 0.058 0.060 0.063 0.049 0.061 0.062

100 0.060 0.066 0.068 0.049 0.066 0.067

200 0.063 0.069 0.073 0.050 0.072 0.072

300 0.069 0.071 0.074 0.052 0.073 0.074

400 0.064 0.066 0.073 0.048 0.071 0.072

500 0.064 0.070 0.071 0.049 0.068 0.069

Correlated Uniform (0,1) ± 0.1Beta (5,1), ρ ¼ 0:8

n KS Inverse chi Inverse norm Tippett Wilcoxon Logit

20 0.061 0.047 0.058 0.035 0.061 0.057

50 0.081 0.037 0.054 0.046 0.06 0.053

100 0.080 0.039 0.061 0.045 0.056 0.057

200 0.156 0.031 0.062 0.039 0.059 0.059

300 0.180 0.017 0.04 0.039 0.049 0.042

400 0.270 0.025 0.055 0.052 0.053 0.056

500 0.278 0.017 0.052 0.046 0.060 0.052

Correlated 0.5 Uniform (0,1) ± 0.5Beta (5,1), ρ ¼ 0:8

n KS Inverse chi Inverse norm Tippett Wilcoxon Logit

20 0.239 0.007 0.009 0.035 0.013 0.009

50 0.652 0.002 0.022 0.025 0.02 0.022

100 0.911 0.001 0.018 0.023 0.018 0.019

200 0.998 0 0.021 0.034 0.025 0.021

300 1 0 0.029 0.033 0.039 0.027

400 1 0 0.027 0.024 0.034 0.023

500 1 0 0.031 0.024 0.036 0.025

Correlated 0.9 Uniform (0,1) ± 0.1Beta (6,3), ρ ¼ 0:8

n KS Inverse chi Inverse norm Tippett Wilcoxon Logit

20 0.072 0.041 0.05 0.038 0.052 0.05

50 0.107 0.039 0.065 0.051 0.068 0.062

100 0.148 0.048 0.086 0.04 0.089 0.086

200 0.227 0.038 0.088 0.048 0.101 0.086

300 0.296 0.024 0.097 0.042 0.119 0.095

400 0.353 0.04 0.108 0.053 0.131 0.105

Table 3 Type I error of six global tests of p-values when
p-values are independent or strongly correlated (The
nominal Type I error rate is 0.05 and the severe inflation
of Type I error with simulated error rate> 0.1 is written
in bold italic) (Continued)

500 0.439 0.041 0.12 0.033 0.148 0.111

Correlated 0.5 Uniform (0,1) ± 0.5Beta (6,3), ρ ¼ 0:8

n KS Inverse chi Inverse norm Tippett Wilcoxon Logit

20 0.421 0.01 0.038 0.025 0.063 0.029

50 0.837 0.008 0.089 0.019 0.147 0.071

100 0.989 0.008 0.16 0.024 0.253 0.122

200 1 0.001 0.268 0.023 0.411 0.207

300 1 0 0.392 0.022 0.581 0.32

400 1 0.004 0.492 0.031 0.679 0.422

500 1 0.003 0.551 0.024 0.761 0.486
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As in the Type I error simulation, in the power simula-
tion, we used sample sizes ranging from 20 to 500 and per-
form simulation 1000 times. The power is the percentage
of results across the 1000 replicates where the null hypoth-
esis was rejected. We present the power comparison results
under week correlation ρ ¼ 0:2 in Table 5 because all six
global tests are free of Type I errors in this scenario. Power
comparisons for ρ ¼ 0:8;Beta 2;5ð Þ;Uniform 0:1 ;0:9ð Þ are
summarized in Appendix 1 (Table 6). These results indicate
that Tippett’s test, which only takes the smallest p-value
into account, might not be appropriate for detecting the
patterns of alternation. Among the other five global tests,
Inverse chi test has the strongest power in most simulated
cases. These five global tests have strong power to detect
Pr P≤pð Þ > pfor small to moderate sample sizes.
The global tests have been implemented in R. The R code

is available at http://www.childrensmercy.org/Content/
view.aspx?id=22812.

Discussion and conclusions
Multifactor Dimensionality Reduction (MDR) is a novel
statistical method developed to characterize and detect
nonlinear complex gene-gene interactions (epistasis) that
could be associated with disease susceptibility. We suggest
incorporating global test to filtration procedures to reveal a
trend of gene interactive patterns when noisy genes are
removed step by step using ReliefF or other filtration tech-
niques. The optimal number of genes for further MDR
analysis can be identified by p-values of global testing. A
real data applications and empirical assessment of our
proposed methods reveal strong trends in global testing of
p-values and clear patterns of distribution of p-values in
three scenarios: 1) presence of GxG interactions, 2) ab-
sence of GxG interactions, 3) weak GxG interactions that
needs filtration to remove noisy genes. The proposed
global tests can serve as a screening approach before indi-
vidual tests to prevent false discovery. Strong power in

http://www.childrensmercy.org/Content/view.aspx?id=22812
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Table 4 Type I error of six global tests of p-values when
p-values are moderately correlated (The nominal Type I
error rate is 0.05 and the severe inflation of Type I error
with simulated error rate> 0.1 is written in bold italic)

Correlated Uniform (0,1) ± 0.1Beta (5,1), ρ ¼ 0:2

n KS Inverse chi Inverse norm Tippett Wilcoxon Logit

20 0.018 0.031 0.022 0.048 0.021 0.026

50 0.014 0.019 0.008 0.046 0.01 0.013

100 0.014 0.014 0.013 0.05 0.014 0.014

200 0.003 0.01 0.006 0.044 0.004 0.007

300 0.002 0.005 0.002 0.05 0.001 0.002

400 0.001 0.003 0 0.045 0 0

500 0.002 0.002 0.003 0.042 0.001 0.003

Correlated 0.5 Uniform (0,1) ± 0.5Beta (5,1), ρ ¼ 0:2

n KS Inverse chi Inverse norm Tippett Wilcoxon Logit

20 0 0 0 0.023 0 0

50 0 0 0 0.023 0 0

100 0 0 0 0.029 0 0

200 0 0 0 0.025 0 0

300 0 0 0 0.024 0 0

400 0 0 0 0.021 0 0

500 0 0 0 0.024 0 0

Correlated 0.9 Uniform (0,1) ± 0.1Beta (6,3), ρ ¼ 0:2

n KS Inverse chi Inverse norm Tippett Wilcoxon Logit

20 0.041 0.051 0.047 0.047 0.042 0.049

50 0.032 0.049 0.043 0.042 0.034 0.048

100 0.033 0.032 0.035 0.043 0.035 0.036

200 0.017 0.009 0.023 0.052 0.017 0.024

300 0.017 0.016 0.015 0.039 0.011 0.016

400 0.028 0.006 0.014 0.044 0.01 0.017

500 0.021 0.007 0.013 0.048 0.009 0.015

Correlated 0.5 Uniform (0,1) ± 0.5Beta (6,3), ρ ¼ 0:2

n KS Inverse chi Inverse norm Tippett Wilcoxon Logit

20 0.008 0.004 0.003 0.025 0.001 0.003

50 0.021 0.002 0.001 0.024 0.001 0.002

100 0.046 0.001 0.001 0.028 0 0.001

200 0.165 0 0 0.023 0 0

300 0.337 0 0 0.025 0 0

400 0.558 0 0 0.017 0 0

500 0.66 0 0 0.018 0 0

Correlated Uniform (0,1) ± 0.1Beta (5,1), ρ ¼ Beta 2;5ð Þ
n KS Inverse chi Inverse norm Tippett Wilcoxon Logit

20 0.034 0.043 0.036 0.047 0.034 0.04

50 0.019 0.022 0.02 0.05 0.018 0.021

100 0.012 0.018 0.011 0.038 0.008 0.012

200 0.002 0.008 0.006 0.045 0.006 0.006

300 0.005 0.009 0.005 0.037 0.004 0.007

400 0.004 0.005 0.002 0.038 0.002 0.002

500 0 0.003 0.001 0.05 0 0.002

Table 4 Type I error of six global tests of p-values when
p-values are moderately correlated (The nominal Type I
error rate is 0.05 and the severe inflation of Type I error
with simulated error rate> 0.1 is written in bold italic)
(Continued)

Correlated 0.5 Uniform (0,1) ± 0.5Beta (5,1), ρ ¼ Beta 2;5ð Þ
n KS Inverse chi Inverse norm Tippett Wilcoxon Logit

20 0.001 0.002 0.001 0.021 0 0.001

50 0 0 0 0.026 0 0

100 0 0 0 0.016 0 0

200 0 0 0 0.02 0 0

300 0 0 0 0.031 0 0

400 0.002 0 0 0.02 0 0

500 0.001 0 0 0.028 0 0

Correlated 0.9 Uniform (0,1) ± 0.1Beta (6,3), ρ ¼ Beta 2;5ð Þ
n KS Inverse chi Inverse norm Tippett Wilcoxon Logit

20 0.049 0.046 0.054 0.044 0.055 0.05

50 0.039 0.031 0.042 0.042 0.036 0.043

100 0.027 0.027 0.036 0.05 0.033 0.037

200 0.033 0.023 0.03 0.041 0.025 0.032

300 0.042 0.018 0.029 0.038 0.023 0.032

400 0.041 0.012 0.02 0.046 0.017 0.021

500 0.053 0.013 0.026 0.054 0.02 0.028

Correlated 0.5 Uniform (0,1) ± 0.5Beta (6,3), ρ ¼ Beta 2;5ð Þ
n KS Inverse chi Inverse norm Tippett Wilcoxon Logit

20 0.02 0.006 0.008 0.03 0.006 0.009

50 0.051 0 0 0.031 0 0

100 0.123 0 0.003 0.023 0.001 0.004

200 0.271 0 0 0.021 0 0

300 0.414 0 0 0.033 0 0

400 0.552 0 0 0.024 0 0

500 0.663 0 0 0.028 0 0

Correlated Uniform (0,1) ± 0.1Beta (5,1), ρ ¼ Uniform 0:1; 0:9ð Þ
n KS Inverse chi Inverse norm Tippett Wilcoxon Logit

20 0.036 0.041 0.034 0.048 0.031 0.038

50 0.042 0.039 0.043 0.054 0.039 0.048

100 0.028 0.03 0.029 0.054 0.028 0.029

200 0.037 0.018 0.023 0.045 0.021 0.025

300 0.016 0.012 0.013 0.025 0.015 0.014

400 0.034 0.008 0.017 0.045 0.015 0.019

500 0.031 0.006 0.014 0.046 0.005 0.016

Correlated 0.5 Uniform (0,1) ± 0.5Beta (5,1), ρ ¼ Uniform 0:1; 0:9ð Þ
n KS Inverse chi Inverse norm Tippett Wilcoxon Logit

20 0.011 0.005 0.002 0.017 0.001 0.002

50 0.029 0.002 0.003 0.022 0.001 0.003

100 0.048 0 0 0.023 0.001 0.001

200 0.099 0 0 0.023 0.000 0

300 0.161 0 0 0.026 0.000 0

400 0.176 0 0 0.016 0.000 0
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Table 4 Type I error of six global tests of p-values when
p-values are moderately correlated (The nominal Type I
error rate is 0.05 and the severe inflation of Type I error
with simulated error rate> 0.1 is written in bold italic)
(Continued)

500 0.218 0 0 0.024 0.001 0

Correlated 0.9 Uniform (0,1) ± 0.1Beta (6,3), ρ ¼ Uniform 0:1; 0:9ð Þ
n KS Inverse chi Inverse norm Tippett Wilcoxon Logit

20 0.05 0.036 0.038 0.033 0.044 0.039

50 0.054 0.031 0.047 0.043 0.045 0.044

100 0.044 0.031 0.048 0.05 0.045 0.056

200 0.091 0.034 0.057 0.047 0.058 0.058

300 0.117 0.024 0.054 0.049 0.054 0.05 s8

400 0.097 0.022 0.048 0.048 0.048 0.05

500 0.116 0.014 0.042 0.035 0.043 0.043

Correlated 0.5 Uniform (0,1) ± 0.5Beta (5,1), ρ ¼ Uniform 0:1; 0:9ð Þ
n KS Inverse chi Inverse norm Tippett Wilcoxon Logit

20 0.108 0.009 0.016 0.027 0.017 0.016

50 0.298 0.002 0.014 0.025 0.013 0.014

100 0.459 0.002 0.014 0.024 0.016 0.014

200 0.774 0 0.016 0.017 0.022 0.017

300 0.908 0 0.016 0.023 0.023 0.015

400 0.933 0 0.024 0.024 0.029 0.019

500 0.975 0 0.016 0.02 0.032 0.013
Uniform distributions have random correlation matrices. The nominal Type I
error rate is 0.05 and the severe inflation of Type I error with simulated error
rate> 0.1 is written in bold italic).

Table 5 Power of six global tests of correlated P-values
(The correlation coefficient for Beta random variables is
ρ. Uniform distributions have random correlation
matrices)

Correlated 0.9Uniform (0,1) ± 0.1Beta (0.4,6), ρ ¼ 0:2

n KS Inverse chi Inverse norm Tippett Wilcoxon Logit

20 0.176 0.359 0.259 0.332 0.191 0.294

50 0.27 0.576 0.418 0.505 0.303 0.464

100 0.407 0.824 0.599 0.652 0.456 0.672

200 0.645 0.967 0.827 0.791 0.657 0.877

300 0.808 0.995 0.92 0.861 0.785 0.941

400 0.896 0.997 0.966 0.896 0.861 0.979

500 0.949 0.999 0.984 0.933 0.926 0.993

Correlated 0.6 Uniform (0,1) ± 0.4Beta (0.4,6), ρ ¼ 0:2

n KS Inverse chi Inverse norm Tippett Wilcoxon Logit

20 0.797 0.957 0.896 0.784 0.815 0.918

50 0.987 1 0.997 0.939 0.983 1

100 1 1 1 0.972 1 1

200 1 1 1 0.998 1 1

300 1 1 1 1 1 1

400 1 1 1 0.999 1 1

500 1 1 1 0.999 1 1

Correlated 0.9 Uniform (0,1) ± 0.1Beta (0.5,4.5), ρ ¼ 0:2

n KS Inverse chi Inverse norm Tippett Wilcoxon Logit

20 0.151 0.266 0.207 0.225 0.183 0.221

50 0.227 0.466 0.336 0.326 0.264 0.369

100 0.343 0.664 0.493 0.437 0.397 0.534

200 0.545 0.863 0.709 0.537 0.595 0.757

300 0.706 0.944 0.832 0.587 0.719 0.863

400 0.811 0.982 0.913 0.632 0.81 0.933

500 0.89 0.992 0.951 0.695 0.887 0.966

Correlated 0.6 Uniform (0,1) ± 0.4Beta (0.5,4.5), ρ ¼ 0:2

n KS Inverse chi Inverse norm Tippett Wilcoxon Logit

20 0.161 0.291 0.212 0.225 0.173 0.237

50 0.251 0.475 0.362 0.302 0.292 0.385

100 0.322 0.64 0.504 0.397 0.39 0.528

200 0.517 0.882 0.701 0.527 0.58 0.743

300 0.726 0.952 0.845 0.568 0.731 0.873

400 0.806 0.976 0.894 0.607 0.805 0.917

500 0.895 0.998 0.95 0.676 0.883 0.965

Correlated 0.9 Uniform (0,1) ± 0.1Beta (1,5), ρ ¼ 0:2

n KS Inverse chi Inverse norm Tippett Wilcoxon Logit

20 0.127 0.118 0.139 0.056 0.144 0.136

50 0.203 0.199 0.211 0.063 0.235 0.206

100 0.248 0.272 0.28 0.064 0.271 0.269

200 0.406 0.448 0.453 0.06 0.446 0.438

300 0.535 0.559 0.541 0.073 0.542 0.535

400 0.619 0.657 0.649 0.07 0.657 0.631

500 0.725 0.743 0.729 0.071 0.731 0.715
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small sample sizes and well controlled Type I error in ab-
sence of GxG interactions makes these tests highly recom-
mended in epistasis studies.
Global testing has not been implemented in MDR ana-

lyses in the literature we have reviewed. Currently, research-
ers rely on adjustment of individual p-values such as false
discovery rate (FDR) as suggested by [31]. Due to high
dimensionality in genetic interactions, the FDR and other
multiple testing adjustments often lose power in MDR ana-
lyses. Some MDR studies [27] have utilized the false positive
report probability proposed by [32] but this method has
been pointed out by [33] to be heuristic and wrong in for-
mulation. In contrast, the global tests proposed by this paper
are based on rigorous statistical theories and inferences.
Through extensive simulation on correlated p-values,

our study shows that the Inverse chi test is the most
powerful approach to be incorporated with the filtration
techniques to determine the optimal number of SNPs for
the final MDR analysis. The KS test might have high infla-
tion of Type I errors when p-values are highly correlated
or when p-values peak near the center of histogram
(Pattern 4). The Tippett’s test has very low power
when the effect size of Pattern 2 is small.
We observe mild inflation of Type I error (<0.07) when

p-values are Uniform with a random correlation matrix.



Table 5 Power of six global tests of correlated P-values
(The correlation coefficient for Beta random variables is
ρ. Uniform distributions have random correlation
matrices) (Continued)

Correlated 0.6 Uniform (0,1) ± 0.4Beta (1,5), ρ ¼ 0:2

n KS Inverse chi Inverse norm Tippett Wilcoxon Logit

20 0.572 0.56 0.599 0.117 0.611 0.587

50 0.893 0.864 0.904 0.104 0.917 0.891

100 0.991 0.981 0.986 0.114 0.991 0.981

200 1 1 0.999 0.091 1 0.999

300 1 1 1 0.109 1 1

400 1 1 1 0.111 1 1

500 1 1 1 0.085 1 1

Table 6 Power of six global tests of correlated P-values
(The correlation coefficient for Beta random variables is
ρ Uniform distributions have random correlation
matrices)

Correlated 0.9 Uniform (0,1) ± 0.1Beta (0.4,6), ρ ¼ 0:8

n KS Inverse chi Inverse norm Tippett Wilcoxon Logit

20 0.19 0.402 0.285 0.329 0.204 0.323

50 0.293 0.654 0.458 0.547 0.324 0.514

100 0.41 0.833 0.644 0.665 0.48 0.7

200 0.705 0.963 0.856 0.785 0.693 0.901

300 0.864 0.989 0.943 0.861 0.834 0.956

400 0.934 0.996 0.967 0.878 0.862 0.978

500 0.962 0.999 0.989 0.914 0.928 0.994

Correlated 0.6 Uniform (0,1) ± 0.4Beta (0.4,6), ρ ¼ 0:8

n KS Inverse chi Inverse norm Tippett Wilcoxon Logit

20 0.848 0.968 0.913 0.787 0.837 0.924

50 0.994 0.999 0.998 0.922 0.989 0.998

100 1 1 0.999 0.956 0.999 0.999

200 1 1 1 0.987 1 1

300 1 1 1 0.993 1 1

400 1 1 1 0.992 1 1

500 1 1 1 0.994 1 1

Correlated 0.9 Uniform (0,1) ± 0.1Beta (0.5,4.5), ρ ¼ 0:8

n KS Inverse chi Inverse norm Tippett Wilcoxon Logit

20 0.145 0.282 0.199 0.243 0.158 0.237

50 0.281 0.491 0.376 0.345 0.296 0.409

100 0.374 0.686 0.532 0.425 0.418 0.573

200 0.598 0.874 0.734 0.531 0.627 0.771

300 0.774 0.951 0.866 0.579 0.767 0.89

400 0.855 0.975 0.914 0.641 0.836 0.936

500 0.938 0.993 0.962 0.635 0.91 0.977

Correlated 0.6 Uniform (0,1) ± 0.4Beta (0.5,4.5), ρ ¼ 0:8

n KS Inverse chi Inverse norm Tippett Wilcoxon Logit

20 0.149 0.287 0.221 0.217 0.178 0.242

50 0.265 0.518 0.4 0.334 0.323 0.438

100 0.421 0.693 0.539 0.434 0.438 0.575

200 0.604 0.856 0.726 0.485 0.644 0.754

300 0.778 0.951 0.858 0.582 0.761 0.886

400 0.871 0.978 0.931 0.612 0.858 0.942

500 0.921 0.981 0.948 0.658 0.901 0.957

Correlated 0.9 Uniform (0,1) ± 0.1Beta (1,5), ρ ¼ 0:8

n KS Inverse chi Inverse norm Tippett Wilcoxon Logit

20 0.157 0.147 0.158 0.066 0.154 0.154

50 0.192 0.234 0.231 0.069 0.222 0.22

100 0.32 0.355 0.347 0.064 0.344 0.34

200 0.491 0.521 0.501 0.061 0.502 0.488

300 0.655 0.698 0.663 0.068 0.651 0.652

400 0.776 0.784 0.754 0.068 0.751 0.741

500 0.847 0.844 0.82 0.072 0.823 0.802
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Our global tests are implemented for screening SNPs and
investigators can continue to use multiplicity adjustment
algorithms such as FDR to adjust individual p-values in the
final MDR analysis to prevent false discoveries. As a result,
slight inflation in Type I error (<0.07) is acceptable in prac-
tice. Moreover, in our case study, we show that one can
utilize the decreasing trend of global test results (Figure 4)
to facilitate decision making. If global tests provided false
discoveries, then the trend of global tests results would ran-
domly fluctuate up and down. Figure 4 with a decreasing
trend for global testing results as well Figure 3 with histo-
grams systematically switching to Pattern 2 can also serve
as diagnostic tools to prevent false discoveries or selection
bias in global tests.
It is worthwhile to point out the proposed global tests

can effectively prevent false discovery without losing the
power to detect significant GxG interactions. To prevent
the false discovery, current MDR applications typically
choose one optimal model for each k-way interaction.
This method has two major drawbacks: firstly, the false
positive discovery is not reduced by choosing one opti-
mal model; secondly, choosing one optimal models may
overlook other potential GxG interactions that also con-
tributes to the disease susceptibility.
The major contribution of our manuscript is to in-

corporate global testing procedures to MDR framework.
Our proposed global tests will provide p-values to help
practitioners determine the appropriate number of SNPs
to be remained in the final analysis. The current filtra-
tion process does not provide p-values. Therefore, using
arbitrary cutoff value in the current process might lead
to over-filtering or under-filtering of SNPs.
All 6 global tests are based on statistical inference instead

of permutation. These 6 tests run very fast in a single com-
puter. The major computational challenges are in the gen-
eration of p-values for MDR through permutation tests but
this is not the major focus of our work. Several works have
been devoted to improve the efficiency and shorten the
computing time in MDR analysis in high-throughput data.



Table 6 Power of six global tests of correlated P-values
(The correlation coefficient for Beta random variables is
ρ Uniform distributions have random correlation
matrices) (Continued)

Correlated 0.6Uniform(0,1) ± 0.4Beta(1,5), ρ ¼ 0:8

n KS Inverse chi Inverse norm Tippett Wilcoxon Logit

20 0.698 0.676 0.695 0.124 0.703 0.682

50 0.966 0.921 0.938 0.131 0.948 0.922

100 0.999 0.988 0.991 0.11 0.997 0.988

200 1 1 1 0.116 1 1

300 1 1 1 0.122 1 1

400 1 1 1 0.122 1 1

500 1 1 1 0.114 1 1

Correlated 0.9Uniform(0,1) ± 0.1Beta(0.4,6), ρ ¼ Beta 2;5ð Þ
n KS Inverse chi Inverse norm Tippett Wilcoxon Logit

20 0.147 0.349 0.245 0.332 0.181 0.288

50 0.263 0.59 0.422 0.529 0.298 0.481

100 0.396 0.804 0.627 0.648 0.447 0.687

200 0.675 0.963 0.831 0.804 0.662 0.89

300 0.809 0.99 0.927 0.836 0.808 0.951

400 0.899 0.998 0.966 0.907 0.865 0.979

500 0.958 0.999 0.98 0.928 0.912 0.99

Correlated 0.6Uniform(0,1) ± 0.4Beta(0.4,6), ρ ¼ Beta 2;5ð Þ
n KS Inverse chi Inverse norm Tippett Wilcoxon Logit

20 0.827 0.974 0.921 0.789 0.808 0.941

50 0.994 1 0.999 0.945 0.977 0.999

100 1 1 1 0.983 1 1

200 1 1 1 0.997 1 1

300 1 1 1 1 1 1

400 1 1 1 1 1 1

500 1 1 1 0.999 1 1

Correlated 0.9Uniform(0,1) ± 0.1Beta(0.5,4.5), ρ ¼ Beta 2;5ð Þ
n KS Inverse chi Inverse norm Tippett Wilcoxon Logit

20 0.141 0.269 0.205 0.229 0.162 0.231

50 0.235 0.444 0.33 0.321 0.257 0.367

100 0.359 0.661 0.526 0.408 0.423 0.562

200 0.543 0.879 0.709 0.516 0.577 0.747

300 0.726 0.95 0.849 0.562 0.731 0.878

400 0.81 0.977 0.902 0.632 0.81 0.928

500 0.914 0.993 0.959 0.683 0.895 0.967

Correlated 0.6 Uniform (0,1) ± 0.4Beta (0.5,4.5), ρ ¼ Beta 2;5ð Þ
n KS Inverse chi Inverse norm Tippett Wilcoxon Logit

20 0.138 0.26 0.199 0.238 0.169 0.212

50 0.241 0.469 0.356 0.335 0.288 0.385

100 0.347 0.662 0.506 0.402 0.408 0.55

200 0.547 0.885 0.703 0.519 0.585 0.761

300 0.694 0.949 0.852 0.592 0.727 0.88

400 0.802 0.987 0.914 0.627 0.804 0.935

500 0.882 0.991 0.948 0.641 0.871 0.959

Table 6 Power of six global tests of correlated P-values
(The correlation coefficient for Beta random variables is
ρ Uniform distributions have random correlation
matrices) (Continued)

Correlated 0.9Uniform(0,1) ± 0.1Beta(1,5), ρ ¼ Beta 2;5ð Þ
n KS Inverse chi Inverse norm Tippett Wilcoxon Logit

20 0.121 0.118 0.133 0.071 0.132 0.129

50 0.194 0.21 0.214 0.064 0.217 0.211

100 0.277 0.311 0.305 0.071 0.306 0.299

200 0.449 0.502 0.486 0.068 0.485 0.477

300 0.585 0.643 0.612 0.058 0.623 0.599

400 0.66 0.72 0.697 0.075 0.696 0.682

500 0.767 0.8 0.775 0.059 0.759 0.759

Correlated 0.6Uniform(0,1) ± 0.4Beta(1,5), ρ ¼ Beta 2;5ð Þ
n KS Inverse chi Inverse norm Tippett Wilcoxon Logit

20 0.594 0.591 0.632 0.124 0.637 0.616

50 0.913 0.9 0.921 0.139 0.922 0.914

100 0.996 0.992 0.992 0.111 0.995 0.99

200 1 1 1 0.102 1 1

300 1 1 1 0.115 1 1

400 1 1 1 0.116 1 1

500 1 1 1 0.095 1 1

Correlated 0.9Uniform(0,1) ± 0.1Beta(0.4,6), ρ ¼ Uniform 0:1;0:9ð Þ
n KS Inverse chi Inverse norm Tippett Wilcoxon Logit

20 0.183 0.397 0.292 0.363 0.217 0.324

50 0.291 0.639 0.459 0.545 0.34 0.508

100 0.418 0.821 0.625 0.653 0.463 0.694

200 0.669 0.958 0.855 0.78 0.68 0.881

300 0.818 0.993 0.924 0.861 0.782 0.947

400 0.919 0.997 0.97 0.908 0.89 0.985

500 0.974 1 0.988 0.926 0.932 0.994

Correlated 0.6Uniform(0,1) ± 0.4Beta(0.4,6), ρ ¼ Uniform 0:1;0:9ð Þ
n KS Inverse chi Inverse norm Tippett Wilcoxon Logit

20 0.815 0.964 0.928 0.825 0.836 0.945

50 0.99 1 0.997 0.92 0.988 0.997

100 1 1 1 0.971 1 1

200 1 1 1 0.993 1 1

300 1 1 1 0.997 1 1

400 1 1 1 0.998 1 1

500 1 1 1 1 1 1

Correlated 0.9Uniform(0,1) ± 0.1Beta(0.5,4.5), ρ ¼ Uniform 0:1;0:9ð Þ
n KS Inverse chi Inverse norm Tippett Wilcoxon Logit

20 0.154 0.283 0.216 0.228 0.171 0.24

50 0.272 0.465 0.352 0.331 0.296 0.391

100 0.358 0.675 0.512 0.421 0.414 0.561

200 0.528 0.871 0.706 0.526 0.578 0.749

300 0.749 0.958 0.857 0.578 0.752 0.89

400 0.857 0.986 0.924 0.632 0.841 0.938

500 0.906 0.99 0.951 0.679 0.877 0.962

Dai et al. BioData Mining 2012, 5:3 Page 15 of 17
http://www.biodatamining.org/content/5/1/3



Table 6 Power of six global tests of correlated P-values
(The correlation coefficient for Beta random variables is
ρ Uniform distributions have random correlation
matrices) (Continued)

Correlated 0.6Uniform(0,1) ± 0.4Beta(0.5,4.5), ρ ¼ Uniform 0:1;0:9ð Þ
n KS Inverse chi Inverse norm Tippett Wilcoxon Logit

20 0.137 0.282 0.2 0.228 0.159 0.234

50 0.237 0.484 0.359 0.306 0.293 0.392

100 0.345 0.679 0.503 0.411 0.416 0.544

200 0.577 0.858 0.719 0.512 0.6 0.757

300 0.725 0.946 0.848 0.584 0.743 0.873

400 0.868 0.981 0.92 0.621 0.85 0.931

500 0.9 0.989 0.947 0.676 0.869 0.959

Correlated 0.9Uniform(0,1) ± 0.1Beta(1,5), ρ ¼ Uniform 0:1;0:9ð Þ
n KS Inverse chi Inverse norm Tippett Wilcoxon Logit

20 0.141 0.166 0.16 0.078 0.155 0.155

50 0.213 0.224 0.235 0.054 0.251 0.232

100 0.318 0.362 0.364 0.073 0.365 0.362

200 0.477 0.525 0.498 0.047 0.503 0.485

300 0.621 0.651 0.637 0.071 0.622 0.621

400 0.718 0.747 0.721 0.071 0.708 0.707

500 0.804 0.818 0.794 0.075 0.785 0.78

Correlated 0.6Uniform(0,1) ± 0.4Beta(1,5), ρ ¼ Uniform 0:1;0:9ð Þ
n KS Inverse chi Inverse norm Tippett Wilcoxon Logit

20 0.694 0.656 0.705 0.109 0.721 0.685

50 0.938 0.901 0.929 0.125 0.94 0.915

100 0.994 0.989 0.991 0.114 0.995 0.99

200 1 1 1 0.143 1 1

300 1 0.999 1 0.113 1 1

400 1 1 1 0.122 1 1

500 1 1 1 0.119 1 1

Uniform distributions have random correlation matrices).
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We will defer interested readers to the corresponding cita-
tions for computing issues in high-throughput MDR ana-
lysis. These computational limitations make our strategy
appropriate in large scale candidate gene studies, but may
be limited in application to genome-wide association stud-
ies until further improvements in computing speed are rea-
lized or very large-scale computing resources are available.
MDR permutation computing time is largely dependent

on the dimension of data sets. In other words, the comput-
ing time increases as the number of SNPs and/or the num-
ber of subjects increases. Interestingly, the dimension of
data does little impact on the computing time of global
tests. The computing time for global tests of 1000 p-values
is very close to tests of 10 p-values. Several filtration
approaches have been proposed and some (ReliefF, SURF
and TuRF etc.) have been implemented in the MDR soft-
ware (http://www.epistasis.org). In this work, we utilize
ReliefF for filtration. There have been other filtration
techniques proposed in literature. For instance, [34] intro-
duced entropy-based information gain to search and evalu-
ate interactions among risk factors. The current MDR
software [8] provides ReliefF, entropy, chi-square test, etc.
about 10 filtration methods. The global tests could be inte-
grated in the workflow with other filtration techniques, al-
though the comparison and evaluation of all filtration
technique requires more research attention.
Appendix 1
Simulation of correlated p-values
We generate correlated Beta variables using the method

proposed by [30]. According to Bayesian theory, random
variables from a Beta prior and a Beta-Binomial conjugate
function will yield correlated random deviates whose mar-
ginal distribution is also Beta. Firstly, randomly generate a
variable K from K e Beta� Binomial v;α;βð Þ where α and
β are the shape parameters. Conditioning on K ¼ k , gener-
ate P deviates from Beta αþ k;vþ β� 1ð Þ . By integrating
on K, the P deviates have unconditional marginal distribu-
tion as Beta α;βð Þ and the correlation coefficient among P
deviates is ρ ¼ v= vþ αþ βð Þ . In this paper, we simulated
different correlation coefficient with constant ρ ¼ 0:2;08
or ρ as a random variable from ρ e Beta 2;5ð Þ and
ρ eUniform 0:1;0:9ð Þ respectively.
In the above method, ρ ¼ v= vþ αþ βð Þ can be written

as v ¼ αþ βð Þρ= 1� ρð Þ but algorithm to generate Beta-
Binomial with non-integer v is not widely available. As a
result, we use an alternative method to generate correlated
uniform distributions . In essence, correlated uniform vari-
ables, U, with a random correlation matrix Σ can be gener-
ated by transforming multivariate normal variables X using
formula U ¼ F Xð Þ where F is the CDF of the standard
normal distribution. First, we generated a positive definite
covariance matrix, Σ0 with randomly selected eigenvalues
and randomly generated orthogonal matrix as eigenvectors
(R clusterGeneration package). Let σij be the component in
Σ0. We can convert the covariance matrix, Σ0 to correl-
ation matrix Σ with components rij ¼ σ ijffiffiffiffiffiffiffi

σ iiσ jj
p . To ensure the

correlation is invariant to transformation, we need to ad-

just correlation matrix Σ into
Padj ¼ 2 sin π

P
=6ð Þ . Per-

form Choleski factorization to generate C ¼ Padj
� 	1

2
.

Generate a vector of i.i.d. standard normal variables, X0.
Let X ¼ X0∗C and U ¼ F Xð Þ. As a result, the variables U
are correlated uniform variables with correlation matrix Σ.
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