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Abstract
Background: In a number of domains, like in DNA microarray data analysis, we need to cluster
simultaneously rows (genes) and columns (conditions) of a data matrix to identify groups of rows
coherent with groups of columns. This kind of clustering is called biclustering. Biclustering
algorithms are extensively used in DNA microarray data analysis. More effective biclustering
algorithms are highly desirable and needed.

Methods: We introduce BiMine, a new enumeration algorithm for biclustering of DNA microarray
data. The proposed algorithm is based on three original features. First, BiMine relies on a new
evaluation function called Average Spearman's rho (ASR). Second, BiMine uses a new tree structure,
called Bicluster Enumeration Tree (BET), to represent the different biclusters discovered during the
enumeration process. Third, to avoid the combinatorial explosion of the search tree, BiMine
introduces a parametric rule that allows the enumeration process to cut tree branches that cannot
lead to good biclusters.

Results: The performance of the proposed algorithm is assessed using both synthetic and real
DNA microarray data. The experimental results show that BiMine competes well with several
other biclustering methods. Moreover, we test the biological significance using a gene annotation
web-tool to show that our proposed method is able to produce biologically relevant biclusters. The
software is available upon request from the authors to academic users.

Background
DNA microarray technology is a revolutionary method
enabling the measurement of expression levels of at least
thousands of genes in a single experiment under diverse
experimental conditions. This technology has found
numerous applications in research and applied areas like
biology, drug discovery, toxicological study and diseases
diagnosis.

DNA microarray data is typically represented by a matrix
where each cell represents the gene expression level of a
gene under a particular experimental condition. One
important analysis task of microarray data concerns the
simultaneous identification of groups of genes that show
similar expression patterns across specific groups of exper-
imental conditions (samples) [1]. Such an application can
be addressed by a biclustering process whose aim is to dis-
cover coherent biclusters. That is, a bicluster is a subset of
genes and conditions of the original expression matrix
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where the selected genes present a coherent behavior
under all the experimental conditions contained in the
bicluster.

More generally, biclustering has also applications in other
domains such as text mining [2,3], target marketing [4,5],
markets search [6], search in databases [7,8] and analyz-
ing foreign exchange data [9].

Formally, let I = {1, 2, ..., n} denote the index set of n
genes and J = {1, 2, ..., m} the index set of m conditions, a
data matrix M(I, J) associated with I and J is a n*m matrix
where the ith row, i ∈ I, represents the ith gene or attribute
and the jth, j ∈ J, column represents the jth condition or
individual and mij of the ith row and the jth column repre-
sents the value of the jth condition for the ith gene. A biclus-
ter in a data matrix M(I, J) is a couple (I', J') such that I'⊆
I and J'⊆ J. The biclustering problem can be formulated as
follows: Given a data matrix M, construct a bicluster Bopt
associated with M such that:

where f is an objective function measuring the quality, i.e.,
degree of coherence, of a group of biclusters and BC(M) is
the set of all the possible groups of biclusters associated
with M.

Clearly, biclustering is a highly combinatorial problem
with a search space of order of O(2|I|+|J|). In the general
case, biclustering is known to be NP-hard [1]. Conse-
quently, most of the algorithms used to discover biclusters
are based on heuristics to explore partially the combinato-
rial search space. The existing algorithms for biclustering
can roughly be classified into two large families: system-
atic search methods and stochastic search methods (also
called metaheuristic methods). Representative examples
of systematic search methods include, among others,
greedy algorithms [1,10-14], divide and conquer algo-
rithms [7,15] and enumeration algorithms [16-18]. On
the other hand, among the metaheuristic methods, we can
mention neighbourhood-based algorithms like simulated
annealing [19], GRASP [20], evolutionary and hybrid
algorithms [21-24]. A recent review of various biclustering
algorithms for biological data analysis is provided in [25].

Since the biclustering problem is a NP-hard problem and
no single existing algorithm is completely satisfactory for
solving the problem. It is useful to seek more effective
algorithms for better solutions. In this paper, we intro-
duce a new enumeration algorithm for biclustering of
DNA microarray data, called BiMine. Our algorithm is
based on three original features. First, BiMine relies on a
new evaluation function called Average Spearman's rho
(ASR) which is used to guide effectively the exploration of

the search space. Second, BiMine uses a new tree structure,
called Bicluster Enumeration Tree (BET), to represent con-
veniently the different biclusters discovered during the
enumeration process. Third, to avoid the combinatorial
explosion of the search tree, BiMine introduces a paramet-
ric rule that allows the enumeration process to cut tree
branches that cannot lead to good biclusters.

To assess the performance of the proposed BiMine algo-
rithm, we show computational results obtained on both
synthetic and real datasets and compare our results with
those from four state-of-the-art biclustering algorithms.
Moreover, to evaluate the biological relevance of our
resulting biclusters, we carry out a practical validation
with respect to a specific Gene Ontology (GO) annotation
with the help of a popular web tool.

Methods
A New Evaluation Function of Biclustering
Like any search algorithm, BiMine needs an evaluation
function to assess the quality of a candidate bicluster. One
possibility is to use the so-called Mean Squared Residue
(MSR) function [1]. Indeed, since its introduction, MSR
has largely been used by biclustering algorithms, see for
instance [11,13,20-22,26,27]. However, MSR is known to
be deficient to assess correctly the quality of certain types
of biclusters [14,28,29]. In a recent work, Teng and Chan
[14] proposed another function for bicluster evaluation
called Average Correlation Value (ACV). However, the per-
formance of ACV is known to be sensitive to errors [13].

In this paper, we propose a new evaluation function called
Average Spearman's rho (ASR) based on Spearman's rank

correlation. Let  and

 be two vectors, the Spearman's rank

correlation [30] expresses the dependency between the vec-

tors Xi and Xj (denoted by ρij) and is defined as follows:

where  (resp. ) is the rank of  (resp. ).

Let (I', J') be a bicluster in data matrix M(I, J), the ASR
evaluation function is then defined by:
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where:

ρi, j (i ≠ j) is the Spearman's rank correlation associated
with the row indices i and j in the bicluster (I', J'). ρk, l (k ≠
l) is the Spearman's rank correlation associated with the
column indices k and l in the bicluster (I', J').

Proposition 1: Let (I', J') be a bicluster in a data matrix
M(I, J). We have:

Proof: Let us first show that:

Indeed, we have  Spearman's rank correlations

to calculate. According to [30], a Spearman's rank correla-
tion belongs to [-1..1], we have then:

i.e.

It is easy to show in the same way that:

Hence:

i.e.:

With Spearman's rank correlation, a high (resp. low)
value, close to 1 (resp. close to -1), indicates that the data is
strongly (resp. weakly) correlated between two vectors
[30]. As shown above, ASR also takes values from [-1..1].
A high (resp. low) ASR value, close to 1 (resp. close to -1),
indicates that the genes/conditions of the bicluster are
strongly (resp. weakly) correlated.

Furthermore, in the next subsection, we want to assess the
quality of the proposed ASR evaluation function in com-
parison with two popular functions MSR and ACV.

Studies of the ASR Evaluation Function
We compare the ASR evaluation function with Mean
Squared Residue (MSR) [1]. As mentioned previously, MSR
is probably the most popular evaluation function and
largely used in the literature. As a second reference func-
tion, we use Average Correlation Value (ACV) which was
proposed very recently in [14].

For the comparison, we apply the evaluation functions
(without using any algorithms), i.e., ASR, MSR and ACV,
on seven matrices (biclusters) denoted by M1 to M7 (Fig-
ure 1). These matrices are employed in [14,25] and repre-
sent all typical biclusters. They are defined as follows. M1
is a constant bicluster, M2 has constant rows, M3 has con-
stant columns, M4 is composed of coherent values (addi-
tive model), M5 represents coherent values (multiplicative
model), M6 contains coherent values (multiplicative
model, where the first row of M5 is multiplied by 10) and
M7 represents a coherent evolution.

The values of ASR versus MSR and ACV are illustrated by
Table 1 where the values of MSR and ACV were taken from
[14].

Concerning MSR, a low (resp. high) value, close to 0 (resp.
higher than a fixed threshold), indicates that the genes/
conditions of the bicluster are strongly (resp. weakly) cor-
related.
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Concerning ACV, a high (resp. low) value, close to 1 (resp.
close to 0), indicates that the genes/conditions of the
bicluster are strongly (resp. weakly) correlated.

According to Table 1, the ASR, ACV and MSR functions are
perfect to assess the quality of biclusters M1, M2, M3 and
M4. However, MSR is deficient on M6 and M7, confirming
the claim that MSR may have trouble on certain types of
biclusters [14,28,29]. On the other hand, ASR and ACV
are perfect to assess the quality of biclusters M5and M6 but
ASR is slightly better than ACV when applied on M7.

BiMine Algorithm
We present now our biclustering algorithm called BiMine
which uses ASR as its evaluation function and a new struc-
ture, called Bicluster Enumeration Tree (BET) to represent
the different biclusters associated with a data matrix. We
describe first the main procedure for building biclusters
and then show an illustrative example to ease the under-
standing of the algorithm.

Let M be a data matrix, by using our algorithm, we operate
in three steps: During the first step, we preprocess the data

Different typical BiclustersFigure 1
Different typical Biclusters. Data matrix M1 represents a constant bicluster, M2 represents a constant rows bicluster, M3 
represents a constant column bicluster, M4 represents coherent values (additive model), M5 represents coherent values (multi-
plicative model), M6 represents coherent values (multiplicative model, where the first row of M5 is multiplied by 10) and M7 
represents a coherent evolution.

Table 1: ASR versus MSR and ACV.

Biclusters M1 M2 M3 M4 M5 M6 M7
Evaluation Functions

MSR 0 0 0 0 0.62 2.425 131.87

ACV 1 1 1 1 1 1 0.84

ASR 1 1 1 1 1 1 0.99
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matrix M. During the second step, we construct a BET
associated with M. Finally, during the last step, we identify
the best biclusters.

Preprocessing
In the clustering area, preprocessing is often used to elim-
inate insignificant attributes (genes). For the biclustering,
the preprocessing step aims to remove irrelevant expres-
sion values of the data matrix M that do not contribute in
obtaining pertinent results. A value mij of M is considered
to be insignificant if we have:

where avgi is the average over the non-missing values in
the ith row, mij represents the intersection of row i with col-
umn j and δ is a fixed threshold. Equation 4 is applied for
each value of M. See Tables 2 and 3 for an example.

By considering only non-missing values, we minimize the
loss of information in the data matrix. This way of pre-
processing missing values should be contrasted with other
techniques. For instance, in [31], where the whole row is
removed if the row contains at least one missing value or
in [32], where the whole column is removed if it contains
at least 5% of missing values. Furthermore, BiMine oper-
ates directly on the raw data matrix without resorting to a
discretization of data, reducing thus the risk of loss of
information.

Building Bicluster Enumeration Tree
After the preprocessing step, we construct a Bicluster Enu-
meration Tree (BET) that represents every possible bicluster
that can be made from M. Compared to other data struc-
ture, BET permits to represent the maximum number of
significant biclusters and the links that exist between these
biclusters. Since the number of possible biclusters (nodes
of BET) increases exponentially, BiMine employs paramet-
ric rules to help the enumeration process to close (or cut)
a tree node. Intuitively, a node is cut down if the quality

of the bicluster represented by this node is below a fixed
threshold.

To describe formally our BiMine algorithm, let us define in
the following the needed notations:

ni: ith node order containing biclusters.

ni.gi: genes of ni.

ni.Cgi: conditions of ni.

bic: bicluster.

δ: threshold used in Equation 4.

Threshold: quality threshold according to ASR.

The BiMine algorithm (Figure 2 (Algorithm 1)) uses a first
function to built an initial tree (Init_BET) which is recur-
sively extended by a second function (BET-tree). Init_BET
(Figure 2 (Function 1)) generates thus the different biclus-
ters from data matrix M with one gene and significant
conditions after using Equation 4. The root of BET is the
empty bicluster (Line 1). The nodes at level one are the
possible biclusters with one gene (Line 2-4). Notice that
each node ni is composed of two part ni.gi (genes) and
ni.Cgi (significant conditions after the filter preprocessing
with Equation 4). From these initial biclusters, new and
larger biclusters are recursively built while pruning as
soon as possible any bicluster if its ASR value doesn't
reach a fixed Threshold. This is the role of the next func-
tion BET-tree.

BET-tree (Figure 2 (Function 2)) creates recursively the
BET (Line 13) and generates the set of the best biclusters.
The ith child of a node is made up, on the one hand, of the
union of the genes of the father node and the genes of the
ith uncle node, starting from the right side of the father. On
the other hand, it is made up of the intersection of the con-
ditions of the father and those of the ith uncle starting

mij avgi

avgi

−
≤ δ (4)

Table 2: Data matrix M'.

C1 C2 C3 C4 C5 C6

I1 10 20 5 15 40 18

I2 20 40 10 30 24 20

I3 23 12 8 15 29 50

I4 4 8 2 6 5 5

I5 15 25 8 12 29 50

Table 3: Data matrix M after preprocess.

C1 C2 C3 C4 C5 C6

I1 10 20 5 15 40 -

I2 20 40 10 30 - 20

I3 - 12 8 15 29 50

I4 4 8 2 6 - -

I5 15 - 8 12 29 50
Page 5 of 16
(page number not for citation purposes)



BioData Mining 2009, 2:9 http://www.biodatamining.org/content/2/1/9

Page 6 of 16
(page number not for citation purposes)

BiMine algorithmFigure 2
BiMine algorithm.

Algorithm 1 BiMine (input: Data matrix M, �, threshold; output: B the best biclusters) 

Begin 

(1) BB=Init_BET(M)  

(2) B=BET-tree(BB) 

(3) Return B 

End 

 

Function 1 Init_BET (input: Data matrix M; output: BB: biclusters with one gene and significant 

conditions) 

Begin 

(1) BB=∅ (root of the BET tree) 

(2) Foreach genei ∈ M do 

(3)  BB = add a node ni, i.e., genei as ni.gi and significant conditions as ni.Cgi (using equation 4), 

as a child of the root 

(4) End Loop 

(5) Return BB 

End 

 

Function 2 BET-tree (input: BB; output: B: the best biclusters) 

Begin 

(1) B= Ø 

(2) Foreach ni do 

(3)  nj = ni.next  

(4)  Foreach nj do 

(5)   bic = { nj.gj ∪ ni.gi ; ni.Cgi ∩ nj.Cgj}  

(6)   If ASR(bic) � Threshold then 

(7)    Insert bic as child of ni 

(8) If bic is a leaf in BET and doesn’t includes in another bicluster in B then 

(9)     B= B ∪ bic 

(10)    End If 

(11)   End If 

(12)  End Loop 

(13)  BET-tree (the children list of ni) 

(14) End Loop 

(15) Return B 

End 
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from the right side of the father (Line 4-12). If the ASR
value associated with the ith child is smaller than or equal
to the given Threshold, then this child will be ignored (Line
6-11).

Notice that this parametric pruning rule based on a qual-
ity threshold is fully justified in this context. Indeed, if the
current bicluster is not good enough, then it is useless to
keep it because expanding such a bicluster leads certainly
to biclusters of worse quality. From this point of view, the
pruning rule shares similar principles largely applied in
optimization methods like Dynamic Programming. In
addition, this pruning rule is essential in reducing the tree
size and remains indispensable for handling large data-
sets.

Finally, the union of the leaves of the constructed BET that
are not included in other leaves and have at least two
genes represents a good group of biclusters (Line 8-9).

Proposition 2: Time complexity of BiMine is
O(2nmlog(m)), where n is the number of rows and m is the
number of columns of the data matrix.

Proof: Time complexity of the first step of BiMine is
O(nm). Indeed, this step is achieved via a scanning of the
whole data matrix M that is of size nm.

Time complexity of the second step of BiMine is
O(2nmlog(m)). Actually, in the worst case, we have 2n

nodes in the BET, representing the possible clusters of
genes, each of which is associated with m conditions. On
the other hand, since the conditions of the node are
sorted, the construction of the intersection of two subsets
of conditions of size m boils down to the search of m ele-
ments in a sorted array of size m. This can be done via a
dichotomic search with a time complexity O(mlog(m)).

Hence, the time complexity of the second step of BiMine
is O(2nmlog(m)). Thus, The time complexity of BiMine is
O(2nmlog(m)).

Illustrative Example
Let M' a data matrix (Table 2). During the first step, we
make a preprocessing of M' to obtain the data matrix M
(Table 3). The character "-" represents a removed insignif-
icant value. During the second step, we construct a BET
that represents every possible bicluster that can be made
from M. Let us set δ = 0.1 and threshold of ASR = 1. The
first level of the BET is made up of the nodes that represent
the possible biclusters with one gene. Each node repre-
sents a row of data matrix M (Figure 3).

The second level of the BET is made up of nodes that are
the union of genes and the intersection of conditions in
the first level.

In the Figure 4, we explain the construction of the children
of node I1. Each dashed edges without cross represents a
valid combination between two nodes (with ASR = 1).
First, we perform the union of genes of node labeled I1
with those of I2 (first uncle), and the intersection of {c1, c2,
c3, c4, c5} of I1 with those of {c1, c2, c3, c4, c6} of I2. The
ASR of the obtained bicluster (I1, I2; c1, c2, c3, c4) is 1;
hence we insert it as a first child of I1. After that, we proc-
ess I1 with node labeled I3 (second uncle). We obtain the
bicluster (I1, I3; c2, c3, c4, c5) with ASR lower than 1, hence,
this child bicluster of I1 is discarded. We carry out the
same process with node I4. We obtain the bicluster (I1, I4;
c1, c2, c3, c4) with ASR equal to 1. We insert it as child of
I1. Finally, with I5 we obtain the bicluster (I1, I5; c1, c3, c4,
c5) with ASR lower than 1; hence we don't insert it.

We repeat the same process for the node I2, I3, I4 and I5.
This completes the second level of the BET (Figure 5).

First level of BETFigure 3
First level of BET.
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Children construction of the first node of the second level of BETFigure 4
Children construction of the first node of the second level of BET.
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Second level of BETFigure 5
Second level of BET.
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The third level of the BET is made up of nodes that are the
union of genes and the intersection of conditions in the
second level (Figure 6).

At each level of the BET, we keep only nodes whose ASR is
equal to 1. The union of the leaves of the constructed BET
that are not included in other leaves is { (I1, I2, I4; c1, c2,
c3, c4), (I3, I5; c3, c4, c5, c6) }. This constitutes the group of
biclusters (Figure 7).

Results
In this section, we assess the BiMine algorithm on both
synthetic and real DNA microarray data. We have imple-
mented our algorithm in Java programming language. We
compare BiMine results with the results of four prominent
biclustering algorithms used by the community, named
as: CC [1], OPSM [10], ISA [33] and Bimax [15]. For these
reference algorithms, we have used Biclustering Analysis

Toolbox (BicAT) which is a recent software platform for
clustering-based data analysis that integrates all these
biclustering algorithms [34].

Synthetic Data
Data Sets
According to [14,19,35], we generated randomly two
types of synthetic datasets of size (I, J) = (200, 20). Differ-
ent types of biclusters are embedded like constant col-
umns, additive, multiplicative and coherent evolution
biclusters. The first (resp. second) dataset contains biclus-
ters without (resp. with) overlapping. To obtain statisti-
cally stable results, for each type of datasets, we generated
10 problem instances by randomly inserting the biclusters
at different places in the data matrix.

Last level of BETFigure 6
Last level of BET.
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Comparison Criteria
Following [35], we have used the following two ratios to
evaluate our biclustering algorithm:

with

Scb = Portion size of biclusters correctly extracted

Totsize = Total size of correct biclusters

with

Sncb = Portion size of biclusters not correctly extracted

Totsize = Total size of corrected biclusters

The ratio θShared (resp. θNotShared) expresses the percent of
shared (resp. not shared) biclusters volume which corre-
sponds (resp. not corresponds) with the real biclusters. In
fact, when θShared (resp. θNotShared) is equal to 100% the
algorithm extracts the corrected (resp. not corrected)
biclusters. A perfect solution have θShared = 100% and θNot-

Shared = 0%.

Protocol for Experiments
For our biclustering algorithm, we have fixed δ = 0.2 and
threshold of ASR = 0.85. The parameter settings used for
the four reference algorithms are the default values as used
in [12]. We run all the algorithms and we select the 4
biclusters obtained by each algorithm which best fit the 4
real biclusters. We compute the θShared and the θNotShared for
each algorithm to show the averaged percentage of vol-
ume of the resulting biclusters which is shared and not
shared with the real biclusters. The objective of this exper-

θ shared
Scb

Tot size
= ×100 (5)

θNotshared
Sncb

Tot size
= ×100 (6)

Extracted biclusters are presented with bold lineFigure 7
Extracted biclusters are presented with bold line.
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iment is to determine which algorithm is able to extract all
implanted biclusters.

Table 4 shows the best biclusters provided by each algo-
rithm for the first dataset.

As we can see in Table 4, BiMine can extract 100% of
implanted biclusters with an extra volume that represent
33,03% of implanted biclusters. In fact, to obtain a new
bicluster, combining two biclusters provide an extra vol-
ume only on conditions but give exactly the correct
number of genes. However, the best of the studied algo-
rithms, i.e., Bimax, can extract only 58.18% of implanted
biclusters with 21.39% of extra volume. CC uses the MSR
function of the selected elements as the biclustering crite-
rion. When the signal of the implanted biclusters is weak,
the greedy nature of CC may delete some rows and col-
umns of the implanted biclusters in the beginning of the
algorithm and miss the deleted rows and columns in the
output biclusters. ISA uses only up-regulated and down-
regulated constant expression values in its biclustering
algorithm. When coherent biclusters exist, ISA may miss
some rows and columns of the implanted biclusters.
OPSM seeks only up and down regulation expression val-
ues with coherent evolution. Its performance decreases

when there exist scenarios constant biclusters. The discre-
tization preprocessing used by Bimax cannot identify the
elements in the coherent biclusters. Hence, the algorithm
cannot find exactly the implanted biclusters.

Table 5 illustrates the best biclusters provided by each
algorithm for the second dataset.

As we can see in Table 5, the results with BiMine present
the highest coverage of the correct biclusters. In fact,
BiMine can extract 85.35% of implanted biclusters with an
extra volume that represent 41.78% of implanted biclus-
ters. However, the best of the studied algorithms, i.e.,
OPSM, can extract only 42.87% of implanted biclusters
with 49.31% of extra volume. To find overlapped biclus-
ters in a given matrix, some algorithms, e.g., CC, need to
mask the discovered biclusters with random values which
is not necessary for BiMine. ISA and OPSM are sensitive to
overlapping biclusters. They use the normalization step in
the first preprocessing step of their algorithms. With over-
lapping biclusters, the expression value range after nor-
malization becomes narrower. Table 5 shows that BiMine
is marginally affected by the implanted overlap biclusters.
We can conclude that BiMine can extract all implanted
biclusters unlike other algorithms that can extract only
certain types of biclusters.

Real data
Data Sets
We applied our approach to the well-known yeast cell-
cycle dataset. This dataset is publicly available from [36]
and described in [37] and processed in [1]. It contains the
expression profiles of more than 6000 yeast genes meas-
ured at 17 conditions over two complete cell cycles. In our
experiments we use 2884 genes selected by [1].

Comparison Criteria
Two criteria are used. First, in order to evaluate the biolog-
ical relevance of our proposed biclustering algorithm, we
compute the p-values to indicate the quality of the
extracted biclusters. Second, we identify the biological
annotations for the extracted biclusters.

Protocol for Experiments
For our biclustering algorithm, we have fixed δ = 0.1 and
threshold of ASR = 0.85. The parameter settings used for
the different reference biclustering algorithms are the
default settings as used in [12]. For the first experiment,
we run all the algorithms and we compute the p-value for
extracted biclusters. With BiMine (resp. Bimax), we have
obtained more than 1800 (resp. 3700) biclusters. Since a
biological analysis on 1800 (resp. 3700) biclusters was
not feasible, only the 100 biggest biclusters with high ASR
were selected for analysis like Christinat et al. [38]. Post-
filtering was applied for all algorithms in order to elimi-

Table 4: BiMine results and comparison with other algorithms in 
synthetic data without overlapped biclusters.

Algorithms θShared θNotShared

CC 18.21% 36.57%

OPSM 46.39% 74.42%

ISA 39.38% 5.31%

Bimax 58.18% 21.39%

BiMine 100% 33.03%

Table 5: BiMine results and comparison with other algorithms in 
synthetic data with overlapped biclusters.

Algorithms θShared θNotShared

CC 9.21% 47.94%

OPSM 42.87% 49.31%

ISA 23.28% 23.97%

Bimax 34.07% 3.43%

BiMine 85.35% 41.78%
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nate insignificant biclusters like Cheng et al. [13]. With the
others algorithms, we obtained 10 biclusters for CC, 45
biclusters for ISA and 14 biclusters for OPSM. For the sec-
ond experiment, we use a well-known web-tool to search
for the significant shared Gene Ontology terms of the
groups of genes.

Biological relevance
In order to evaluate the biological relevance of our pro-
posed biclustering algorithm, we compare it with the
results of CC, ISA, Bimax, OPSM on yeast cell-cycle data-
set. The idea is to determine whether the set of genes dis-
covered by biclustering algorithms shows significant
enrichment with respect to a specific Gene Ontology
(GO) annotation. We use the web-tool FuncAssociate [39]
to evaluate the discovered biclusters. FuncAssociate com-
putes the adjusted significance scores for each bicluster.
Indeed, the adjusted significance scores assess genes in
each bicluster by computing adjusted p-values, which
indicates how well they match with the different GO cat-
egories. Note that a smaller p-value, close to 0, is indicative
of a better match [37]. Table 6 represents the different val-
ues of significant scores p-value for each algorithm over
the percentage of total extracted biclusters. In fact with
BiMine, 100% of tested biclusters have p-value = 5%. The
same result is obtained with p-value = 1%. With p-value
equals to 0.5% (resp. 0.1%), BiMine has 93% (resp. 82%)
of biclusters. On the other hand, the best results (with the
p-value is equals to 0.5% and 0.1% respectively) among
the compared algorithms are obtained by Bimax with 89%
(resp. 79%) of extracted biclusters. Finally, 51% of
extracted biclusters with BiMine have p-value = 0.001%
while those of Bimax have 64%. We note that BiMine per-
forms well for all p-values compared to CC, ISA and
OPSM. Also, BiMine performs well for four cases of p-
value (p-value = 5%, p-value = 1%, p-value = 0.5% and p-
value = 0.1%) over five compared to Bimax. Best results
are obtained by BiMine and Bimax.

Furthermore, in order to identify the biological annota-
tions for the extracted biclusters we use GOTermFinder
http://db.yeastgenome.org/cgi-bin/GO/goTermFinder
which is a tool available in the Saccharomyces Genome
Database (SGD). GOTermFinder is designed to search for
the significant shared GO terms of the groups of genes and
provides users with the means to identify the characteris-
tics that the genes may have in common.

We present the significant shared GO terms (or parent of
GO terms) used to describe the two selected set of genes
(extracted by BiMine) with 11 genes × 11 conditions and
12 genes × 13 conditions in each bicluster with ASR equal
to 0.8690 and 0.8873 respectively, for biological process,
molecular function and cellular component. As [40], we
report the most significant GO terms shared by these
biclusters. For example, with the first bicluster (Table 7),
the genes (YDL003W, YDL164C, YDR097C, YDR440W,
YKL113C, YLL002W, YLR183C, YNL102W) are particu-
larly involved in the process of cellular response to DNA
damage stimulus, response to DNA damage stimulus, cel-
lular response to stress, cellular response to stimulus,
response to stress and response to stimulus.

The values within parentheses after each GO term in Table
7, such as (66.7%, 1.87e-08) in the first bicluster, indicate
the cluster frequency and the statistical significance. The
cluster frequency (66.7%) shows that out of 12 genes in
the first bicluster 8 belong to this process, and the statisti-
cal significance is provided by a p-value of 1.87e-08
(highly significant).

According to [41-43], in microarray data analysis, genes
are considered to be in the same cluster if their trajectory
patterns of expression levels are similar across a set of con-
ditions. Figure 8 shows the biclusters of Table 7 found by
BiMine algorithm on the yeast dataset. From a visual
inspection of the biclusters presented, we can notice that
the genes present a similar behaviour under a subset of
conditions. In Additional File 1, we show the best biclus-
ter found by each compared algorithm using GoTer-
mFinder. Also, we show their gene expression profiles
drawn by BicAT. We notice that BiMine and Bimax have a
high p-value. CC (resp. OPSM) cannot identify any com-
ponent ontology (resp. function ontology) and ISA have
p-value lower than BiMine.

All these experiments show that for this dataset, the pro-
posed approach is able to detect biologically significant
and functionally enriched biclusters with low p-value. Fur-
thermore, BiMine gives a good degree of homogeneity.

Discussion
BiMine algorithm has several interesting features. First,
with BiMine, we avoid using a discretization of the data

Table 6: Proportions of Biclusters significantly enriched by GO 
annotations.

p-value 5% 1% 0.5% 0.1% 0.001%
Algorithms

BiMine 100 100 93 82 51

OPSM 100 100 86 36 22

Bimax 100 100 89 79 64

ISA 89 89 87 69 32

CC 80 70 60 20 10
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matrix. Indeed, classifying the gene expression values
using intervals often leads to bad results [44]. Also, the
discretization may limit the performance of an algorithm
to discover a biological model because of noises which are
inherent in most experiences of microarrays [31]. Thus, to
discretize biological data we must have a good knowledge
of these data to assign good values. However, this is not
always possible.

Second, the BiMine algorithm can enumerate all possible
cases of attributes while reducing the tree size. In fact, the
parametric rule based on ASR threshold allows the enu-
meration process to prune tree branches that cannot lead
to good biclusters.

Third, the BiMine algorithm provides naturally multiple
biclusters of variable sizes. The number of the desired
biclusters can be determined by tuning the ASR threshold.
These multiple solutions of different sizes and different
characteristics may be of interest for biological investiga-
tions.

Forth, the new ASR evaluation function can be applied by
other biclustering algorithm in replacement of MSR or
ACV. It can also be used as a complementary function to
these previously ones.

Finally, in [45], it has been shown that Spearman's rank
correlation is less sensitive to the presence of noise in the
data. Since our evaluation function ASR is based on Spear-
man rank correlation, ASR would also be less sensitive to
the presence of noise in the data.

Conclusions
In this paper, we described BiMine, a new algorithm for
biclustering of DNA microarray data. Compared with
existing biclustering algorithms, BiMine distinguishes
itself by a number of original features. First, BiMine oper-
ates directly on the raw data matrix without resorting to a
discretization of data, reducing thus the risk of loss of
information. Second, with BiMine, it is not necessary to fix
a minimum or maximum number of genes or conditions,
enabling the generation of diversified biclusters. Third,
using a convenient tree structure for representing biclus-
ters with a parametric and effective branch pruning rule,
BiMine is able to explore effectively the search space.
Notice that ASR can also be used by other biclustering
algorithm as an alternative evaluation function.

The performance of the BiMine algorithm is tested and
assessed on a set of synthetic data as well as a real micro-
array data (yeast cell-cycle). Computational experiments
showed highly competitive results of BiMine in compari-
son with four other popular biclustering algorithms for
both types of datasets. In addition, a biological validation
of the selected genes within the biclusters for yeast cell-
cycle has been provided based on a publicly available
Gene Ontology (GO) annotation tool. Notice that
although we presented BiMine with the context of DNA
microarray data analysis, it should be clear that the algo-
rithm can be applied or adapted to other biclustering
problems.

Finally, let us mention that the proposed algorithm is
computational time expensive; one of our ongoing works
aims to find new heuristics to speed up the enumeration
process. In particular, it would be possible to define other

Table 7: Most significant shared GO terms (process, function, component) for two biclusters on Yeast data.

Bicluster volume 
(genes × conditions)

Process Ontology Function Ontology Component Ontology

(12 × 13) cellular response to DNA damage 
stimulus (66.7%, 1.87e-08)
response to DNA damage stimulus 
(66.7%, 6.30e-08)
cellular response to stress
(66.7%, 2.12e-07)
cellular response to 
stimulus(66,7%, 3.25e-07)
DNA repair(50%, 2.58e-05)
response to stress
(66.7%, 2.98e-05)

chromatin binding (25%,0.00037) microtubule organizing center 
part(16.7%, 0.00742)

(11 × 11) cell cycle process 
(63.6%, 2.93e-05)
cell cycle (63.6%, 6.85e-05)

GTPase activator activity 
(18.2%,0.00994)

microtubule cytoskeleton 
(45.5%, 6.33e-06)
microtubule organizing center 
(36.4%,4.97e-05)
spindle pole body 
(36.4%, 4.97e-05)
spindle pole (36.4%, 6.77e-05)
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Two Biclusters found by BiMine on Yeast datasetFigure 8
Two Biclusters found by BiMine on Yeast dataset. (a): Bicluster of size (12 × 13) with ASR = 0.8873. (b): Bicluster of size 
(11 × 11) with ASR = 0.8690.
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heuristic rules to improve the branch pruning in order to
further reduce the size of the explored search tree.
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